
CS 61A Final Review
Summer 2017 Discussion 14: August 8, 2017

1 Tree Recursion
1.1 Consider a special version of the count stairways problem, where instead of taking

1 or 2 steps, we are able to take up to and including k steps at a time.

Write a function count k that figures out the number of paths for this scenario.

def count_k(n, k):

"""

>>> count_k(3, 3) # 3, 2 + 1, 1 + 2, 1 + 1 + 1

4

>>> count_k(4, 4)

8

>>> count_k(10, 3)

274

>>> count_k(300, 1) # Only one step at a time

1

"""



2 Final Review

2 Mutable Linked Lists and Trees
2.1 Write a recursive function flip two that takes as input a linked list lnk and mutates

lnk so that every pair is flipped.

def flip_two(lnk):

"""

>>> one_lnk = Link(1)

>>> flip_two(one_lnk)

>>> one_lnk

Link(1)

>>> lnk = Link(1, Link(2, Link(3, Link(4, Link(5)))))

>>> flip_two(lnk)

>>> lnk

Link(2, Link(1, Link(4, Link(3, Link(5)))))

"""

2.2 Write a function flatten that given a Tree t, will return a linked list of the elements

of t, ordered by level. Entries on the same level should be ordered from left to right.

For example, the following tree will return the linked list <1 2 3 4 5 6 7>.

1

2

5 6

3 4

7

def flatten(t):



Final Review 3

3 Streams
3.1 (Fall 2014) Implement cycle which returns a Stream repeating the digits 1, 3, 0, 2,

and 4, forever. Hint : (3+2) % 5 == 0.

def cycle(start=1):

"""Return a stream repeating 1, 3, 0, 2, 4 forever.

>>> stream_to_list(cycle(), n=12)

[1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 3]

"""

3.2 Write a function merge that takes 2 sorted Streams s1 and s2, and returns a new

sorted Stream which contains all the elements from s1 and s2.



4 Final Review

4 Generators
4.1 Write a generator function that yields functions that are repeated applications of

a one-argument function f. The first function yielded should apply f 0 times (the

identity function), the second function yielded should apply f once, etc.

def repeated(f):

"""

>>> [g(1) for _, g in

... zip(range(5), repeated(double))]

[1, 2, 4, 8, 16]

"""

g = ________________________________________________________

while True:

________________________________________________________________________

________________________________________________________________________

4.2 Ben Bitdiddle proposes the following alternate solution. Does it work?

def ben_repeated(f):

g = lambda x: x

while True:

yield g

g = lambda x: f(g(x))

4.3 Implement accumulate, which takes in an iterble and a function f and yields each

accumulated value from applying f to the running total and the next element.

from operator import add, mul

def accumulate(iterable, f=add):

"""Return running totals

>>> list(accumulate([1,2,3,4,5]))

[1, 3, 6, 10, 15]

>>> list(accumulate([1,2,3,4,5], mul))

[1, 2, 6, 24, 120]

"""

it = iter(iterable)


