
CS 61A Coroutines
Summer 2017 Discussion 12: July 31, 2017

1 Iterables & Iterators
>>> lst = [4, 2]

>>> i = iter(lst)

>>> j = iter(lst)

>>> i

<list_iterator object>

>>> next(i)

4

>>> next(i)

2

>>> next(j)

4

>>> next(i)

StopIteration

>>> next(j)

2

An iterable is any container that can be processed sequentially. Examples include

lists, tuples, strings, and dictionaries. Often we want to access the elements of an

iterable, one at a time. We find ourselves writing lst[0], lst[1], lst[2], and so on.

It would be more convenient if there was an object that could do this for us, so that

we don’t have to keep track of the indices.

This is where iterators come in. We provide an iterable, using the iter function,

and this returns a new iterator object. Each time we call next on the iterator object,

it gives us one element at a time, just like we wanted. When it runs out of elements

to give, calling next on the iterator object will raise a StopIteration error.

We can create as many iterators as we would like from a single iterable. But, each

iterator goes through the elements of the iterable only once. If you want to go

through an iterable twice, create two iterators!

For Loops
>>> range_iterator = iter([4, 2])

>>> is_done = False

>>> while not is_done:

... try:

... val = next(range_iterator)

... print(val)

... except StopIteration:

... is_done = True

4

2

By now, you are familiar with using for loops to iterate over iterables like lists and

dictionaries.

This only works because the for loop implicitly creates an iterator using the built-

in iter function. Python then calls next repeatedly on the iterator, until it raises

StopIteration. The code to the right is (basically) equivalent to using a for loop to

iterate over a list of [4, 2].

Iterators as Classes

class Iterator:

def __init__(self, lst):

self.lst = lst

self.i = 0

def __iter__(self):

return self

def __next__(self):

if self.i < len(self.lst):

i += 1

return self.lst[self.i]

else:

raise StopIteration

We can use object oriented programming to write a class that behaves like an

iterator. There is an example implementation to the right.

To make a new instance of this Iterator class, you have to provide an iterable, just

like you have to do with Python’s built-in iter function.

Notice our Iterator class has a __next__ method, so that we can call Python’s built-

in next on it to get the next element out of the iterable we initially passed in.

You might also notice there’s an __iter__ method. This may seem odd since we

only use iter to obtain an iterator so why would we ever have to call iter on

something that’s already an iterator? Well, technically speaking, iterators are just

a subcategory of iterables, since you are still able to iterate over them. Python

wants every iterable including iterators themselves to support its built-in iter

function. That’s why we added an __iter__ method that just returns self.



2 Coroutines

Questions
1.1 What does Python print?

>>> lst = [[1, 2]]

>>> i = iter(lst)

>>> j = iter(next(i))

>>> next(j)

>>> lst.append(3)

>>> next(i)

>>> next(j)

>>> next(i)

1.2 To make the Link class iterable, implement the LinkIterator class.

class Link:

empty = ()

def __init__(self, first, rest=empty):

self.first = first

self.rest = rest

def __iter__(self):

return LinkIterator(self)

class LinkIterator:

def __init__(self, link):

def __iter__(self):

def __next__(self):

2 Generators
>>> def gen_naturals():

... current = 0

... while True:

... yield current

... current += 1

>>> gen = gen_naturals()

>>> gen

<generator object gen at ...>

>>> next(gen)

0

>>> next(gen)

1

A generator function is a special kind of Python function that uses a yield state-

ment instead of a return statement to report values. When a generator function is

called, it returns an iterator. To the right, you can see a function that returns an

iterator over the natural numbers. You can use yield from to take an iterator, and

yield every value from that iterator.

When the list function in Python receives an iterator, it calls the next function

on the input until it raises a StopIteration. It puts each of the elements from the

calls to next into a new list and returns it.



Coroutines 3

Questions
2.1 Write a generator function that returns all subsets of the positive integers from 1

to n. Each call to this generator’s next method will return a list of subsets of the

set [1, 2, ..., n], where n is the number of times next was previously called.

def generate_subsets():

"""

>>> subsets = generate_subsets()

>>> for _ in range(3):

... print(next(subsets))

...

[[]]

[[], [1]]

[[], [1], [2], [1, 2]]

"""

2.2 To make the Link class iterable, implement the __iter__ method using a generator.

class Link:

empty = ()

def __init__(self, first, rest=empty):

self.first = first

self.rest = rest

def __iter__(self):

3 Streams
A stream is a lazily-evaluated linked list. A stream’s elements (except for the first

element) are only computed when those values are needed.

A Stream instance is similar to a Link instance. Both have first and rest attributes.

The rest of a Link is either a Link or Link.empty. Likewise, the rest of a Stream is

either a Stream or Stream.empty.

However, instead of specifying all of the elements in __init__, we provide a func-

tion, compute_rest, which will be called to compute the next element of the stream.

Remember that the code in the function body is not evaluated until it is called,

which lets us implement the desired evaluation behavior. It’s very important that

compute_rest should return a Stream, if you don’t want your Stream to end.



4 Coroutines

class Stream:

empty = 'empty'

def __init__(self, first, compute_rest=lambda: Stream.empty):

self.first = first

self.cached_rest = None

assert callable(compute_rest)

self.compute_rest = compute_rest

@property

def rest(self):

"""Return the rest, computing it if necessary."""

if self.compute_rest is not None:

self.cached_rest = self.compute_rest()

self.compute_rest = None

return self.cached_rest

def __repr__(self):

rest = self.cached_rest if self.compute_rest is None else '<...>'

return 'Stream({}, {})'.format(self.first, rest)

In the example below, we start out with a Stream whose first element is n, and whose

compute_rest function creates another stream. When we do compute the rest, we

get another Stream. It’s first element will be n+1, and it’s compute_rest function will

create a third Stream. This third Stream will start at n+2, and its compute_rest will

make a fourth Stream, and so on. We get an infinite stream of integers, computed

one at a time.

def naturals(n=0):

return Stream(n, lambda: naturals(n+1))

Questions
3.1 Suppose you want an infinite stream of randomly generated numbers. Consider an

attempt to implement this via the code below. Are there any problems with this?

If so, how can we fix it?

from random import random

random_stream = Stream(random(), lambda: random_stream)

3.2 Write a function every_other, which takes in an infinite stream and returns a stream

containing its even indexed elements.

def every_other(s):



Coroutines 5

3.3 Write a function filter_stream, which takes in a boolean function f and a Stream s.

It should return a new Stream, containing only the elements of s for which f returns

True.

def filter_stream(f, s):

3.4 Write a function seventh that creates an infinite stream of the decimal expansion of

dividing n by 7. For example, the first 5 elements in seventh(1) would be 1, 4, 2, 8,

and 5, since 1/7 = .14285.

def seventh(n):

"""The decimal expansion of n divided by 7."""

4 Memoization in Streams
This implementation of streams also uses memoization, or caching. The first time

a program asks a Stream for its rest, the Stream code computes the required value

using compute_rest, saves the resulting value, and then returns it. After that, every

time the rest is referenced, we simply return the value that we stored earlier.

Questions
4.1 What does Python print?

>>> foo = lambda x: 10 * x

>>> s = Stream(foo(1), lambda: foo(2))

>>> s

>>> foo = lambda x: 100 * x

>>> s.rest

>>> s

>>> s.compute_rest = lambda: Stream(foo(3), lambda: s)

>>> s

>>> s.rest

>>> s

>>> s.rest.rest



6 Coroutines

4.2 (Summer 2012 Final) What are the first five values in the following stream?

def my_stream():

def compute_rest():

return add_streams(filter_stream(lambda x: x % 2 == 0, my_stream()),

map_stream(lambda x: x + 2, my_stream()))

return Stream(2, compute_rest)

5 Extra Practice
5.1 We can even represent the sequence of all prime numbers as an infinite stream!

Define a function sieve, which takes in a stream of numbers and returns a new

stream containing only those numbers which are not multiples of an earlier number

in the stream. We can define primes by sifting all natural numbers starting at 2.

Look online for the Sieve of Eratosthenes if you need some inspiration.

def sieve(s):

5.2 This is the function combine_stream. Use it to define the infinite stream of factorials

below! You can assume add and mul have been imported, and you may also use the

infinite stream of naturals from page 4.

def combine_stream(f, s1, s2):

if s1 is Stream.empty or s2 is Stream.empty:

return Stream.empty

return Stream(f(s1.first, s2.first), lambda: combine_stream(f, s1.rest, s2.rest))

def evens():

return combine_stream(add, naturals(0), naturals(0))

def factorials():

Now define a new Stream, where the nth term represents the degree-n polynomial

expansion for ex, which is
∑n

i=0 x
i/i!. You are allowed to use any of the other

functions defined in this problem.

def exp(x):


