
CS 61A Interpreters
Summer 2017 Discussion 11: July 27, 2017

1 Calculator
We are beginning to dive into the realm of interpreting computer programs – that

is, writing programs that understand other programs. In order to do so, we’ll have

to examine programming languages in-depth. The Calculator language, a subset of

Scheme, was the first of these examples. In today’s discussion, we’ll be extending

Calculator with variables and user-defined functions.

The Calculator language is a Scheme-syntax language that currently includes only

the four basic arithmetic operations: +, −, ∗, and /. These operations can be

nested and can take varying numbers of arguments. A few examples of calculator

in action are given on the right.

calc> (+ 2 2)

4

calc> (- 5)

-5

calc> (* (+ 1 2) (+ 2 3))

15

Our goal now is to write an interpreter for this language, and extend its functionality

to variables and user-defined functions. The job of an interpreter is to evaluate

expressions. So, let’s talk about expressions. A Calculator expression is just like a

Scheme list. To represent Scheme lists in Python, we use Pair objects. For example,

the list (+ 1 2) is represented as Pair(’+’, Pair(1, Pair(2, nil))). The Pair

class is the same as the Scheme procedure cons, which would represent the same

list as (cons ’+ (cons 1 (cons 2 nil))).

Pair is very similar to Link, the class we developed for representing linked lists,

except that the second attribute doesn’t have to be a linked list. In addition to

Pair objects, we include a nil object to represent the empty list. Pair instances

have methods:

1. len , which returns the length of the list.

2. getitem , which allows indexing into the pair.

3. map, which applies a function, fn, to all of the elements in the list.

nil has the methods len , getitem , and map. Here’s an implementation of

what we described:

class nil:

"""Represents the special empty pair nil in Scheme."""

def __repr__(self):

return 'nil'

def __len__(self):

return 0

def __getitem__(self, i):

raise IndexError('Index out of range')

def map(self, fn):

return nil

nil = nil() # this hides the nil class *forever*



2 Interpreters

class Pair:

"""Represents the built-in pair data structure in Scheme."""

def __init__(self, first, second):

self.first = first

self.second = second

def __repr__(self):

return 'Pair({}, {})'.format(self.first, self.second)

def __len__(self):

return 1 + len(self.second)

def __getitem__(self, i):

if i == 0:

return self.first

return self.second[i-1]

def map(self, fn):

return Pair(fn(self.first), self.second.map(fn))

Questions
1.1 Translate the following Calculator expressions into calls to the Pair constructor.

> (+ 1 2 (- 3 4))

> (+ 1 (* 2 3) 4)

1.2 Translate the following Python representations of Calculator expressions into the

proper Scheme syntax:

>>> Pair('+', Pair(1, Pair(2, Pair(3, Pair(4, nil)))))

>>> Pair('+', Pair(1, Pair(Pair('*', Pair(2, Pair(3, nil))), nil)))

2 Evaluation
Evaluation discovers the form of an expression and executes a corresponding eval-

uation rule.

We’ll go over two such expressions now:



Interpreters 3

1. Primitive expressions are evaluated directly. For example, the numbers 3.14 and

165 just evaluate to themselves, and the string “+” evaluates to the calc add

function.

2. Call expressions are evaluated in the same way you’ve been doing them all

semester:

(1) Evaluate the operator.

(2) Evaluate the operands from left to right.

(3) Apply the operator to the operands.

Here’s calc eval:

def calc_eval(exp):

"""Evaluates a Calculator expression represented as a Pair."""

if isinstance(exp, Pair):

return calc_apply(calc_eval(exp.first),

list(exp.second.map(calc_eval)))

elif exp in OPERATORS:

return OPERATORS[exp]

else: # Primitive expression

return exp

And here’s calc apply:

def calc_apply(op, args):

"""Applies an operator to a Pair of arguments."""

return op(*args)

Questions
2.1 Suppose we typed each of the following expressions into the Calculator interpreter.

How many calls to calc eval would they each generate? How many calls to

calc apply?

> (+ 2 4 6 8)

> (+ 2 (* 4 (- 6 8)))

2.2 Alyssa P. Hacker and Ben Bitdiddle are also tasked with implementing the and

operator, as in (and (= 1 2) (< 3 4)). Ben says this is easy: they just have to

follow the same process as in implementing * and /. Alyssa is not so sure. Who’s

right?



4 Interpreters

2.3 Now that you’ve had a chance to think about it, you decide to try implementing

and yourself. You may assume the conditional operators (e.g. <, >, =, etc) have

already been implemented for you.

def calc_eval(exp):

def eval_and(operands):



Interpreters 5

3 Tail-Call Optimization
3.1 Write a tail recursive function that returns the nth fibonacci number. We define

fib(0) = 0 and fib(1) = 1.

(define (fib n)

3.2 Write a tail recursive function, reverse, that takes in a Scheme list and returns a

reversed copy.

(define (reverse lst)

3.3 Write a tail recursive function, insert, that takes in a number and a sorted list.

The function returns a sorted copy with the number inserted in the correct position.

(define (insert n lst)

3.4 Write a tail recursive function, append, that takes in two lists and appends them.

Make sure that your function is Θ(n) and tail-recursive.

(define (append a b)


