
CS 61A Scheme
Summer 2017 Discussion 10: July 25, 2017

1 Introduction
In the next part of the course, we will be working with the Scheme programming

language. In addition to learning how to write Scheme programs, we will eventually

write a Scheme interpreter in Project 4!

Scheme is a dialect of the Lisp programming language, a language dating back

to 1958. The popularity of Scheme within the programming language community

stems from its simplicity – in fact, previous versions of CS 61A were taught in the

Scheme language.

2 Primitives and Define
scm> 123

123

scm> 123.123

123.123

scm> #t

True

scm> #f

False

Scheme has a set of atomic primitive expressions. Atomic means that these expres-

sions cannot be divided up.

scm> 123

123

scm> 123.123

123.123

scm> #t

True

scm> #f

False

Unlike in Python, the only primitive in Scheme that is a false value is #f and

its equivalents, false and False. The define special form defines variables and

procedures by binding a value to a variable, just like the assignment statement in

Python. When a variable is defined, the define special form returns a symbol of its

name. A procedure is what we call a function in Scheme!

The syntax to define a variable and procedure are:

• (define <variable name> <value>)

• (define (<function name> <parameters>) <function body>)

scm> (define a 3) ; a = 3

a

scm> a

3

scm> (define (foo x) x) ; procedure named foo

foo

scm> (foo a)

3

2 Scheme

2.1 What would Scheme print?

scm> (define a 1)

scm> a

scm> (define b a)

scm> b

scm> (define c 'a)

scm> c

3 Call Expressions
Scheme call expressions follow prefix notation, where an operator is followed by zero

or more operand subexpressions. Operators may be symbols, such as + and * or

more complex expressions, as long as they evaluate to procedure values.

scm> (- 1 1) ; 1 - 1

0

scm> (/ 8 4 2) ; 8 / 4 / 2

1

scm> (* (+ 1 2) (+ 1 2)) ; (1 + 2) * (1 + 2)

9

To call a function in Scheme, you first need a set of parentheses. Inside the paren-

theses, you specify a function, then the arguments (remember the spaces!).

Evaluating a Scheme function call works just like Python:

1. Evaluate the operator (the first expression after the (), then evaluate each of

the operands.

2. Apply the operator to those evaluated operands.

When you evaluate (+ 1 2), you evaluate the + symbol, which is bound to a built-in

addition function. Then, you evaluate 1 and 2, which are primitives. Finally, you

apply the addition function to 1 and 2.

Some important built-in functions you’ll want to know are:

• +, -, *, /

Scheme 3

• equal?, =, >, >=, <, <=

3.1 What would Scheme print?

scm> (+ 1)

scm> (* 3)

scm> (+ (* 3 3) (* 4 4))

scm> (define a (define b 3))

scm> a

scm> b

4 Special Forms
There are certain expressions that look like function calls, but don’t follow the rule

for order of evaluation. These are called special forms. You’ve already seen one —

define, where the first argument, the variable name, doesn’t actually get evaluated

to a value.

Boolean Operators
scm> (and 25 32)

32

scm> (or 1 2)

1

Scheme also has boolean operators and, or, and not like in Python! In addition, and

and or are also special forms because they are short-circuiting operators.

scm> (and 25 32)

32

scm> (or 1 2)

1

4.1 What does Scheme print?

scm> (and 0 2 200)

scm> (or True (/ 1 0))

scm> (and False (/ 1 0))

scm> (not 3)

4 Scheme

If Statements
scm> (if (< 4 5) 1 2)

1

scm> (if #f (/ 1 0) 42)

42

Another common special form is the if form. An if expression looks like:

(if <condition> <then> <else>)

where <condition>, <then> and <else> are expressions. First, <condition> is evalu-

ated. If it evaluates to #t, then <then> is evaluated. Otherwise, <else> is evaluated.

Remember that only False and #f are false-y values; everything else is truth-y.

scm> (if (< 4 5) 1 2)

1

scm> (if #f (/ 1 0) 42)

42

4.1 What does Scheme print?

scm> (if (or #t (/ 1 0)) 1 (/ 1 0))

scm> (if (> 4 3) (+ 1 2 3 4) (+ 3 4 (* 3 2)))

scm> ((if (< 4 3) + -) 4 100)

scm> (if 0 1 2)

Lambda Expressions
scm> (define x 3)

x

scm> (define y 4)

y

scm> ((lambda (x y) (+ x y)) 6 7)

13

Scheme has lambdas too! The syntax is

(lambda (<PARAMETERS>) <EXPR>)

Like in Python, lambdas are function values. Also like in Python, when a lambda

expression is called in Scheme, a new frame is created where the parameters are

bound to the arguments passed in. Then, <EXPR> is evaluated in this new frame.

Note that <EXPR> is not evaluated until the lambda function is called.

Like in Python, lambda functions are also values! So you can do this to define

functions:

scm> (define square (lambda (x) (* x x)))

square

scm> (square 4)

16

Let Form
There is also a special form based around lambda: let. The structure of let is as

follows:

(let ((<SYMBOL1> <EXPR1>)

...

(<SYMBOLN> <EXPRN>))

<BODY>)

Scheme 5

This special form is really just equivalent to:

((lambda (<SYMBOL1> ... <SYMBOLN>) <BODY>) <EXPR1> ... <EXPRN>)

Questions
4.1 Write a function that calculates factorial. (Note we have not seen any iteration

yet.)

(define (factorial x)

)

4.2 Write a function that calculates the nth Fibonacci number.

(define (fib n)

(if (< n 2)

1

)

5 Pairs and Lists
To construct a (linked) list in Scheme, you can use the constructor cons (which

takes two arguments). nil represents the empty list. If you have a linked list in

Scheme, you can use selector car to get the first element and selector cdr to get the

rest of the list. (car and cdr don’t stand for anything anymore, but if you want the

history go to http://en.wikipedia.org/wiki/CAR and CDR.)

scm> nil

()

scm> (null? nil)

#t

scm> (cons 2 nil)

(2)

scm> (cons 3 (cons 2 nil))

(3 2)

scm> (define a (cons 3 (cons 2 nil)))

a

scm> (car a)

3

scm> (cdr a)

(2)

http://en.wikipedia.org/wiki/CAR_and_CDR

6 Scheme

scm> (car (cdr a))

2

scm> (define (len a)

(if (null? a)

0

(+ 1 (len (cdr a)))))

len

scm> (len a)

2

If a list is a ”good looking” list, like the ones above where the second element is

always a linked list, we call it a well-formed list. Interestingly, in Scheme, the

second element does not have to be a linked list. You can give something else instead,

but cons always takes exactly 2 arguments. These lists are called malformed list.

The difference is a dot:

scm> (cons 2 3)

(2 . 3)

scm> (cons 2 (cons 3 nil))

(2 3)

scm> (cdr (cons 2 3))

3

scm> (cdr (cons 2 (cons 3 nil)))

(3)

In general, the rule for displaying a pair is as follows: use the dot to separate the

car and cdr fields of a pair, but if the dot is immediately followed by an open

parenthesis, then remove the dot and the parenthesis pair. Thus, (0 . (1 . 2))

becomes (0 1 . 2)

There are many useful operations and shorthands on lists. One of them is list

special form list takes zero or more arguments and returns a list of its arguments.

Each argument is in the car field of each list element. It behaves the same as quoting

a list, which also creates the list.

scm> (list 1 2 3)

(1 2 3)

scm> '(1 2 3)

(1 2 3)

scm> (car '(1 2 3))

1

scm> (equal? '(1 2 3) (list 1 2 3))

#t

scm> '(1 . (2 3))

(1 2 3)

scm> '(define (square x) (* x x))

(define (square x) (* x x))

Scheme 7

5.1 Define a function that takes 2 lists and concatenates them together. Notice that

simply calling (cons a b) would not work because it will create a deep list. Instead,

think recursively!

(define (concat a b)

)

scm> (concat '(1 2 3) '(2 3 4))

(1 2 3 2 3 4)

5.2 Define replicate, which takes an element x and a non-negative integer n, and

returns a list with x repeated n times.

(define (replicate x n)

)

scm> (replicate 5 3)

(5 5 5)

8 Scheme

6 Tail-Call Optimization
Scheme implements tail-call optimization, which allows programmers to write re-

cursive functions that use a constant amount of space. A tail call occurs when a

function calls another function as its last action of the current frame. Because

in this case Scheme won’t make any further variable lookups in the frame, the frame

is no longer needed, and we can remove it from memory. In other words, if this is

the last thing you are going to do in a function call, we can reuse the current frame

instead of making a new frame.

Consider this version of factorial that does not use tail calls:

(define (fact n)

(if (= n 0) 1

(* n (fact (- n 1)))))

The recursive call occurs in the last line, but it is not the last expression evaluated.

After calling (fact (- n 1)), the function still needs to multiply that result with

n. The final expression that is evaluated is a call to the multiplication function, not

fact itself. Therefore, the recursive call is not a tail call.

However, we can rewrite this function using a helper function that remembers the

temporary product that we have calculated so far in each recursive step.

(define (fact n)

(define (fact-tail n result)

(if (= n 0) result

(fact-tail (- n 1) (* n result))))

(fact-tail n 1))

fact-tail makes a single recursive call to fact-tail that is the last expression to

be evaluated, so it is a tail call. Therefore, fact-tail is a tail recursive process. Tail

recursive processes can take a constant amount of memory because each recursive

call frame does not need to be saved. Our original implementation of fact required

the program to keep each frame open because the last expression multiplies the

recursive result with n. Therefore, at each frame, we need to remember the current

value of n.

In contrast, the tail recursive fact-tail does not require the interpreter to remem-

ber the values for n or result in each frame. Instead, we can just update the value

of n and result of the current frame! Therefore, we can carry out the calculation

using only enough memory for a single frame.

6.1 Identifying tail calls
A function call is a tail call if it is in a tail context (but a tail call might not be

a recursive tail call as seen above in the first fact definition). Tail context simply

means the expression is the last to be evaluated in that form. For example, we

consider the following to be tail contexts:

• the last sub-expression in a lambda’s body

• the second or third sub-expression in an if form

Scheme 9

• any of the non-predicate sub-expressions in a cond form

• the last sub-expression in an and or an or form

• the last sub-expression in a begin’s body

These make sense intuitively because the last expression to be evaluated in an if

form is not the condition, but rather either the second or third sub-expressions

which are evaluated depending on if the condition is True or False. See if you can

reason through why the others above are considered in tail context as well.

Before we jump into questions, a quick tip for defining tail recursive functions is

to use helper functions. A helper function should have all the arguments from the

parent function, plus additional arguments like total or counter or result.

Questions
6.1 For each of the following functions, identify whether it contains a recursive call in

a tail context. Also indicate if it uses a constant number of frames.

(define (question-a x)

(if (= x 0)

0

(+ x (question-a (- x 1)))))

(define (question-b x y)

(if (= x 0)

y

(question-b (- x 1) (+ y x))))

(define (question-c x y)

(if (> x y)

(question-c (- y 1) x)

(question-c (+ x 10) y)))

(define (question-d n)

(if (question-d n)

(question-d (- n 1))

(question-d (+ n 10))))

6.2 Write a tail recursive function, sum, that takes in a Scheme list and returns the

numerical sum of all values in the list.

(define (sum lst)

10 Scheme

7 Extra Practice
7.1 Define deep-apply, which takes a nested list and applies a given procedure to every

element. deep-apply should return a nested list with the same structure as the input

list, but with each element replaced by the result of applying the given procedure

to that element. Use the built-in list? procedure to detect whether a value is a

list. The procedure map has been defined for you.

(define (map fn lst)

(if (null? lst)

nil

(cons (fn (car lst)) (map fn (cdr lst)))))

(define (deep-apply fn nested-list)

)

scm> (deep-apply (lambda (x) (* x x)) '(1 2 3))

(1 4 9)

scm> (deep-apply (lambda (x) (* x x)) '(1 ((4) 5) 9))

(1 ((16) 25) 81)

scm> (deep-apply (lambda (x) (* x x)) 2)

4

7.2 Write a Scheme function that, when given an element, a list, and an index, inserts

the element into the list at that index.

(define (insert element lst index)

)

