
CS 61A Recursive Objects
Summer 2017 Discussion 9: July 20, 2017

1 Linked Lists in OOP
Linked lists are data abstractions that can have multiple implementations. Previ-

ously, we saw linked lists implemented using Python lists. Today, we will look at

linked lists implemented using Object-Oriented Programming. Here it is:

class Link:

empty = ()

def __init__(self, first, rest=empty):

assert rest is Link.empty or isinstance(rest, Link)

self.first = first

self.rest = rest

def __getitem__(self, i):

if i == 0:

return self.first

return self.rest[i-1]

def __len__(self):

return 1 + len(self.rest)

When we implemented linked lists using Python lists, we called first(lnk) and

rest(lnk) to access the first and rest elements. This time, we can write lnk.first

and lnk.rest instead. In the former, we could access the elements, but we could

not modify them. In the latter, we can access and also modify the elements. In

other words, linked lists implemented using OOP is mutable.

In addition to the constructor init , we have the special Python methods getitem

and len . Note that any method that begins and ends with two underscores is

a special Python method. Special Python methods may be invoked using built-in

functions and special notation. The built-in Python element selection operator, as

in lst[i], invokes lst. getitem (i). Likewise, the built-in Python function len,

as in len(lst), invokes lst. len ().

2 Recursive Objects

Questions
1.1 Write a function remove duplicates that takes as input a sorted linked list of inte-

gers, lnk, and mutates lnk so that all duplicates are removed.

def remove_duplicates(lnk):

"""

>>> lnk = Link(1, Link(1, Link(1, Link(1, Link(5)))))

>>> unique = remove_duplicates(lnk)

>>> len(unique)

2

>>> len(lnk)

2

"""

1.2 Define reverse, which takes in a linked list and reverses the order of the links.

The function may not return a new list; it must mutate the original list. Return a

pointer to the head of the reversed list.

def reverse(lnk):

"""

>>> a = Link(1, Link(2, Link(3)))

>>> r = reverse(a)

>>> r.first

3

>>> r.rest.first

2

"""

Recursive Objects 3

2 Trees in OOP
Trees are also data abstractions that can have multiple implementations. Previously,

we implemented the tree abstraction using Python lists. Let’s look at another

implementation using objects instead. With this implementation, we can easily

specify specialized tree types, such as binary trees, using inheritance.

class Tree:

def __init__(self, root, branches=[]):

for b in branches:

assert isinstance(b, Tree)

self.root = root

self.branches = branches

def is_leaf(self):

return not self.branches

Notice that with this implementation we can mutate the root of a tree by reassign-

ing tree.root. In the previous implementation using lists, this was not possible,

because the abstraction barrier prevented us from seeing how the tree was imple-

mented.

Questions
2.1 Consider the following definitions and assignments and determine what Python

would output for each of the calls below if they were evaluated in order.

>>> t0 = Tree(0)

>>> t0.root

>>> t0.branches

>>> t1 = Tree(0, [1, 2]) # Is this a valid tree?

>>> t2 = Tree(0, [Tree(1), Tree(2, [Tree(3)])])

>>> t2.branches[0]

>>> t2.branches[1].branches[0].root

4 Recursive Objects

2.2 Assuming that every value in t is a number, let’s define average(t), which returns

the average of all the values in t.

def average(t):

"""

Returns the average value of all the nodes in t.

>>> t0 = Tree(0, [Tree(1), Tree(2, [Tree(3)])])

>>> average(t0)

1.5

>>> t1 = Tree(8, [t0, Tree(4)])

>>> average(t1)

3.0

"""

2.3 Write a function that combines the values of two trees t1 and t2 together with the

combiner function. Assume that t1 and t2 have identical structure. This function

should return a new tree.

def combine_tree(t1, t2, combiner):

"""

>>> a = Tree(1, [Tree(2, [Tree(3)])])

>>> b = Tree(4, [Tree(5, [Tree(6)])])

>>> combined = combine_tree(a, b, mul)

>>> combined.root

4

>>> combined.branches[0].root

10

"""

Recursive Objects 5

3 Binary Search Trees
A Binary Search Tree (BST) is a special kind of tree that satisfies the following

properties:

• Every node of a BST has at most two branches called left and right. The

branches are also BSTs.

• For every node, the left branch’s value is less than or equal to its parent’s

value.

• For every node, the right branch’s value is greater than its parent’s value.

Binary Search Tree (BST) Class

class BST:

empty = ()

def __init__(self, root, left=empty, right=empty):

assert left is BST.empty or isinstance(left, BST)

assert right is BST.empty or isinstance(right, BST)

self.root = root

self.left = left

self.right = right

if left is not BST.empty:

assert left.max <= root

if right is not BST.empty:

assert root < right.min

@property

def max(self):

if self.right is BST.empty:

return self.root

return self.right.max

@property

def min(self):

if self.left is BST.empty:

return self.root

return self.left.min

6 Recursive Objects

Questions
3.1 Define a function insert that takes in a BinTree, bst, and a number, n, and returns

a new BinTree that is a copy of bst with a new node inserted. insert should place

the new node as a leaf in the correct position. If t is the BinTree on the left, then

calling insert(t, 3) will return the BinTree on the right.

4 4

/ \ / \

2 5 -> 2 5

/ / \

1 1 3

def insert(bst, n):

"""

>>> bst = BinTree(4, BinTree(2, BinTree(1)), BinTree(5))

>>> new_bst = insert(bst, 3)

>>> new_bst.left.right.root

3

"""

