CS 61A

1 Trees

In computer science, trees are recursive data structures that are widely used in various settings. The diagram to the right is an example of a simple tree.

Notice that the tree branches downward. In computer science, the root of a tree starts at the top, and the leaves are at the bottom.

Some terminology regarding trees:

- Parent node: A node that has branches. Parent nodes can have multiple branches.
- Branch node: A node that has a parent. A branch node can only belong to one parent.
- Root: The top node of the tree. In our example, the node that contains 7 is the root.
- Value: The value at a node. In our example, all of the integers are values.
- Leaf: A node that has no branches. In our example, the nodes that contain $-4,0,6,17$, and 20 are leaves.
- Branch: Notice that each branch of a parent is itself the root of a smaller tree. In our example, the node containing 1 is the root of another tree. This is why trees are recursive data structures: trees have branches, which are trees themselves.
- Depth: How far away a node is from the root. In other words, the number of edges between the root of the tree to the node. In the diagram, the node containing 19 has depth 1 ; the node containing 3 has depth 2 . Since there are no edges between the root of the tree and itself, the depth of the root is 0 .
- Height: The depth of the lowest leaf. In the diagram, the nodes containing $-4,0,6$, and 17 are all the "lowest leaves," and they have depth 4 . Thus, the entire tree has height 4.

In computer science, there are many different types of trees. Some vary in the number of branches each node has; others vary in the structure of the tree.

Implementation

A tree has both a value for the root node and a sequence of branches, which are also trees. In our implementation, we represent the branches as a list of trees. Since a tree is an abstract data type, our choice to use lists is simply an implementation detail.

- The arguments to the constructor tree are the value for the root node and a list of branches.
- The selectors for these are root and branches.

Note that branches returns a list of trees and not a tree directly. Although trees are represented as lists in this implementation, it is important to recognize when working with a tree or a list of trees.

We have also provided a convenience function, is_leaf.

It's simple to construct a tree. Let's try to create the tree below.

\#Example tree construction
$\mathrm{t}=\operatorname{tree}(1$,
[the es,
[the es),
tree (5),
tree (6)]),
tree (2)])

```
# Constructor
def tree(root, branches=[]):
        for branch in branches:
        assert is_tree(branch)
    return [root] + list(branches)
# Selectors
def root(tree):
    return tree[0]
def branches(tree):
    return tree[1:]
#For convenience
def is_leaf(tree):
    return not branches(tree)
```


Questions

1.1 Define a function tree_max (t) that returns the largest number in a tree.
def tree_max (t) :
"""Return the max of a tree."""
1.2 Define a function height (t) that returns the height of a tree. Recall that the height of a tree is the length of the longest path from the root to a leaf.
def height(t):
"""Return the height of a tree"""
1.3 Define a function tree_size (t) that returns the number of nodes in a tree.
def tree_size(t):
"""Return the size of a tree."""

More Fun with Trees!

1.1 Define the procedure find_path(tree, x) that, given a tree tree and a value x, returns a list containing the nodes along the path required to get from the root of tree to a node x. If x is not present in tree, return None. Assume that the entries of tree are unique.

For the following tree, find_path(t, 5) should return $[2,7,6,5]$

1.2 Implement a prune function which takes in a tree t and a depth k, and should return a new tree that is a copy of only the first k levels of t. For example, if t is the tree shown in the previous question, then prune ($t, 2$) should return the tree

def prune(t, k):
1.3 An expression tree is a tree that contains a function for each non-leaf node, which can be either ' + ' or ' \star '. All leaves are numbers. Implement eval_tree, which evaluates an expression tree to its value. You may want to use the functions sum and prod, which take a list of numbers and compute the sum and product respectively.

```
def eval_tree(tree):
    """Evaluates an expression tree with functions as root
    >>> eval_tree(tree(1))
    1
    >>> expr = tree('*', [tree(2), tree(3)])
    >>> eval_tree(expr)
    6
    >>> eval_tree(tree('+', [expr, tree(4), tree(5)]))
    15
    """
```

6 Trees
1.4 We can represent the hailstone sequence as a tree in the figure below, showing the route different numbers take to reach 1 . Remember that a hailstone sequence starts with a number n, continuing to $n / 2$ if n is even or $3 n+1$ if n is odd, ending with 1 . Write a function hailstone_tree (n, h) which generates a tree of height h, containing hailstone numbers that will reach n.

Hint: A node of a hailstone tree will always have at least one, and at most two branches (which are also hailstone trees). Under what conditions do you add the second branch?


```
def hailstone_tree(n, h):
    """Generates a tree of hailstone numbers that will
        reach N, with height H.
    >>> hailstone_tree(1, 0)
    [1]
    >>> hailstone_tree(1, 4)
    [1, [2, [4, [8, [16]]]]]
    >>> hailstone_tree(8, 3)
    [8, [16, [32, [64]], [5, [10]]]]
    """
```

