
CS 61A Trees
Summer 2017 Discussion 5: July 6, 2017

1 Trees
7

1

3

2

−4 0

8

6

11

16

17

19

20

In computer science, trees are recursive data structures that are widely used in

various settings. The diagram to the right is an example of a simple tree.

Notice that the tree branches downward. In computer science, the root of a tree

starts at the top, and the leaves are at the bottom.

Some terminology regarding trees:

• Parent node: A node that has branches. Parent nodes can have multiple

branches.

• Branch node: A node that has a parent. A branch node can only belong to

one parent.

• Root: The top node of the tree. In our example, the node that contains 7 is

the root.

• Value: The value at a node. In our example, all of the integers are values.

• Leaf : A node that has no branches. In our example, the nodes that contain

−4, 0, 6, 17, and 20 are leaves.

• Branch: Notice that each branch of a parent is itself the root of a smaller

tree. In our example, the node containing 1 is the root of another tree. This is

why trees are recursive data structures: trees have branches, which are trees

themselves.

• Depth: How far away a node is from the root. In other words, the number

of edges between the root of the tree to the node. In the diagram, the node

containing 19 has depth 1; the node containing 3 has depth 2. Since there are

no edges between the root of the tree and itself, the depth of the root is 0.

• Height: The depth of the lowest leaf. In the diagram, the nodes containing

−4, 0, 6, and 17 are all the “lowest leaves,” and they have depth 4. Thus, the

entire tree has height 4.

In computer science, there are many different types of trees. Some vary in the

number of branches each node has; others vary in the structure of the tree.

2 Trees

Implementation
Constructor

def tree(root, branches=[]):

for branch in branches:

assert is_tree(branch)

return [root] + list(branches)

Selectors

def root(tree):

return tree[0]

def branches(tree):

return tree[1:]

#For convenience

def is_leaf(tree):

return not branches(tree)

A tree has both a value for the root node and a sequence of branches, which are

also trees. In our implementation, we represent the branches as a list of trees. Since

a tree is an abstract data type, our choice to use lists is simply an implementation

detail.

• The arguments to the constructor tree are the value for the root node and a

list of branches.

• The selectors for these are root and branches.

Note that branches returns a list of trees and not a tree directly. Although trees

are represented as lists in this implementation, it is important to recognize when

working with a tree or a list of trees.

We have also provided a convenience function, is leaf.

It’s simple to construct a tree. Let’s try to create the tree below.

1

3

4 5 6

2

#Example tree construction

t = tree(1,

[tree(3,

[tree(4),

tree(5),

tree(6)]),

tree(2)])

Trees 3

Questions
1.1 Define a function tree max(t) that returns the largest number in a tree.

def tree_max(t):

"""Return the max of a tree."""

1.2 Define a function height(t) that returns the height of a tree. Recall that the height

of a tree is the length of the longest path from the root to a leaf.

def height(t):

"""Return the height of a tree"""

1.3 Define a function tree size(t) that returns the number of nodes in a tree.

def tree_size(t):

"""Return the size of a tree."""

4 Trees

More Fun with Trees!
1.1 Define the procedure find path(tree, x) that, given a tree tree and a value x,

returns a list containing the nodes along the path required to get from the root of

tree to a node x. If x is not present in tree, return None. Assume that the entries

of tree are unique.

For the following tree, find path(t, 5) should return [2, 7, 6, 5]

2

7

3 6

5 11

15

def find_path(tree, x):

"""

>>> find_path(t, 5)

[2, 7, 6, 5]

>>> find_path(t, 10) # returns None

"""

1.2 Implement a prune function which takes in a tree t and a depth k, and should

return a new tree that is a copy of only the first k levels of t. For example, if t is

the tree shown in the previous question, then prune(t, 2) should return the tree

2

7

3 6

15

def prune(t, k):

Trees 5

1.3 An expression tree is a tree that contains a function for each non-leaf node,

which can be either ’+’ or ’*’. All leaves are numbers. Implement eval tree,

which evaluates an expression tree to its value. You may want to use the functions

sum and prod, which take a list of numbers and compute the sum and product

respectively.

def eval_tree(tree):

"""Evaluates an expression tree with functions as root

>>> eval_tree(tree(1))

1

>>> expr = tree('*', [tree(2), tree(3)])

>>> eval_tree(expr)

6

>>> eval_tree(tree('+', [expr, tree(4), tree(5)]))

15

"""

6 Trees

1.4 We can represent the hailstone sequence as a tree in the figure below, showing

the route different numbers take to reach 1. Remember that a hailstone sequence

starts with a number n, continuing to n/2 if n is even or 3n + 1 if n is odd, ending

with 1. Write a function hailstone tree(n, h) which generates a tree of height h,

containing hailstone numbers that will reach n.

Hint: A node of a hailstone tree will always have at least one, and at most two

branches (which are also hailstone trees). Under what conditions do you add the

second branch?

1 2 4 8 16

5 10
3

20

32 64
21

128

def hailstone_tree(n, h):

"""Generates a tree of hailstone numbers that will

reach N, with height H.

>>> hailstone_tree(1, 0)

[1]

>>> hailstone_tree(1, 4)

[1, [2, [4, [8, [16]]]]]

>>> hailstone_tree(8, 3)

[8, [16, [32, [64]], [5, [10]]]]

"""

