
CS 61A Recursion
Summer 2017 Discussion 3: June 29, 2017

1 Recursion
def factorial(n):

if n == 0 or n == 1:

return 1

else:

return n * factorial(n-1)

A recursive function is a function that calls itself. Here’s a recursive function:

Although we haven’t finished defining factorial, we are still able to call it since the

function body is not evaluated until the function is called. We do have one base case:

when n is 0 or 1. Now we can compute factorial(2) in terms of factorial(1),

and factorial(3) in terms of factorial(2), and factorial(4) – well, you get the

idea.

There are three common steps in a recursive definition:

1. Figure out your base case: What is the simplest argument we could possibly

get? For example, factorial(0) is 1 by definition.

2. Make a recursive call with a simpler argument: Simplify your problem, and

assume that a recursive call for this new problem will simply work. This is

called the “leap of faith”. For factorial, we reduce the problem by calling

factorial(n-1).

3. Use your recursive call to solve the full problem: Remember that we are as-

suming the recursive call works. With the result of the recursive call, how

can you solve the original problem you were asked? For factorial, we just

multiply (n− 1)! by n.

Questions
1.1 Create a recursive countdown function that takes in an integer n and prints out a

countdown from n to 1. The function is defined on the next page.

First, think about a base case for the countdown function. What is the simplest

input the problem could be given?

After you’ve thought of a base case, think about a recursive call with a smaller

argument that approches the base case. What happens if you call countdown(n -

1)?
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Then, put the base case and the recursive call together, and think about where a

print statement would be needed.

def countdown(n):

"""

>>> countdown(3)

3

2

1

"""

1.2 Is there an easy way to change countdown to count up instead?

2 Iteration vs. Recursion
We’ve written factorial recursively. Let’s compare the two implementations:

def recursive_fact(n):

if n == 0 or n == 1:

return 1

else:

return n * recursive_fact(n-1)

def iterative_fact(n):

total = 1

while n > 1:

total = total * n

n = n - 1

return total

Let’s also compare fibonacci.

def recursive_fib(n):

if n == 0:

return 0

elif n == 1:

return 1

else:

return (recursive_fib(n-1)

+ recursive_fib(n-2))

def iterative_fib(n):

prev, curr = 0, 1

while n > 0:

prev, curr = curr, prev + curr

n = n - 1

return prev
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For the recursive version, we copied the definition of the Fibonacci sequence straight

into code! The nth Fibonacci number is simply the sum of the two before it. In

iteration, you need to keep track of more numbers and have a better understanding

of the code.

Some code is easier to write iteratively and some recursively. Have fun experiment-

ing with both!

Questions
2.1 Our Python interpreter is broken and pow no longer works! However, we can write

our own replacement. Let’s try writing it both iteratively and recursively. Both

expt iter(base, power) and expt rec(base, power) implement the exponent func-

tion, so we should get the same answer regardless of which one we use. Assume

that power is a non-negative integer.

def expt_iter(base, power):

""" Implements the exponent function iteratively

>>> expt_iter(2, 3)

8

>>> expt_iter(4, 0)

1

"""

def expt_rec(base, power):

""" Implements the exponent function recursively

>>> expt_rec(3, 2)

9

"""
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3 Tree Recursion
Consider a function that requires more than one recursive call. A simple example

is the previous recursive fibonacci function:

def fib(n):

if n == 0:

return 0

elif n == 1:

return 1

else:

return fib(n - 1) + fib(n - 2)

This type of recursion is called tree recursion, because it makes more than one

recursive call in its recursive case. If we draw out the recursive calls, we see the

recursive calls in the shape of an upside-down tree:

fib(4)

fib(2)

fib(0)fib(1)

fib(3)

fib(1)fib(2)

We could, in theory, use loops to write the same procedure. However, problems

that are naturally solved using tree recursive procedures are generally difficult to

write iteratively. As a general rule of thumb, whenever you need to try multiple

possibilities at the same time, you should consider using tree recursion.

Questions
3.1 I want to go up a flight of stairs that has n steps. I can either take 1 or 2 steps each

time. How many different ways can I go up this flight of stairs? Write a function

count stair ways that solves this problem for me. Assume n is positive.

Before we start, what’s the base case for this question? What is the simplest input?

What do count stair ways(n - 1) and count stair ways(n - 2) represent?

Use those two recursive calls to write the recursive case:

def count_stair_ways(n):
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3.2 Consider an insect in an M by N grid. The insect starts at the bottom left corner,

(0, 0), and wants to end up at the top right corner (M-1, N-1). The insect is only

capable of moving right or up. Write a function paths that takes a grid length and

width and returns the number of different paths the insect can take from the start

to the goal. (There is a closed-form solution to this problem, but try to answer it

procedurally using recursion.)

def paths(m, n):

"""

>>> paths(2, 2)

2

>>> paths(117, 1)

1

"""

3.3 The TAs want to print handouts for their students. However, for some unfathomable

reason, both the printers are broken; the first printer only prints multiples of n1,

and the second printer only prints multiples of n2. Help the TAs figure out whether

or not it is possible to print an exact number of handouts!

First try to solve without a helper function. Also try to solve using a helper function

and adding up to the sum.

def has_sum(total, n1, n2):

"""

>>> has_sum(1, 3, 5)

False

>>> has_sum(5, 3, 5) # 0(3) + 1(5) = 5

True

>>> has_sum(11, 3, 5) # 2(3) + 1(5) = 11

True

"""
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3.4 The next day, the printers break down even more! Each time they are used, Printer

A prints a random x copies 50 ≤ x ≤ 60, and Printer B prints a random y copies

130 ≤ y ≤ 140. The TAs also relax their expectations: they are satisfied as long as

they get at least lower, but no more than upper, copies printed. (More than upper

copies is unacceptable because it wastes too much paper.)

Hint: Try using a helper function.

def sum_range(lower, upper):

"""

>>> sum_range(45, 60) # Printer A prints within this range

True

>>> sum_range(40, 55) # Printer A can print a number 56-60

False

>>> sum_range(170, 201) # Printer A + Printer B will print

... # somewhere between 180 and 200 copies total

True

"""


