
CS 61A Higher-Order Functions
Summer 2017 Discussion 2: June 27, 2017

1 Higher-Order Functions
A higher order function (HOF) is a function that manipulates other functions

by taking in functions as arguments, returning a function, or both.

Functions as Arguments
def negate(f, x):

return -f(x)
One way a higher order function can manipulate other functions is by taking func-

tions as input (an argument). Consider this higher order function called negate.

negate takes in a function f and a number x. It doesn’t care what exactly f does,

as long as f is a function, takes in a number and returns a number. Its job is simple:

call f on x and return the negation of that value.

Questions
1.1 Here are some possible functions that can be passed through as f.

def square(n):

return n * n

def double(n):

return 2 * n

What will the following Python statements display?

>>> negate(square, 5)

>>> negate(double, -19)

>>> negate(double, negate(square, -4))

Functions as Return Values
def outer(x):

def inner(y):

...

return inner

def inner(y):

...

def outer(x):

return inner

Often, we will need to write a function that returns another function. One way to

do this is to define a function inside of a function:

The return value of outer is the function inner. This is a case of a function

returning a function. In this example, inner is defined inside of outer. Although

this is a common pattern, we can also define inner outside of outer and still use the

same return statement. However, note that in this second example (unlike the first

example), inner doesn’t have access to variables defined within the outer function,

like x.



2 Higher-Order Functions

Questions
1.1 Use this definition of outer to fill in what Python would display when the following

lines are evaluated.

def outer(n):

def inner(m):

return n - m

return inner

>>> outer(61)

>>> f = outer(10)

>>> f(4)

>>> outer(5)(4)

1.2 Write a function and add that takes a one-argument function f and a number n as

arguments. It should return a function that takes one argument, and does the same

thing as the function f, except also adds n to the result.

def and_add(f, n):

"""Return a new function. This new function takes an

argument x and returns f(x) + n.

>>> def square(x):

... return x * x

>>> new_square = and_add(square, 3)

>>> new_square(4) # 4 * 4 + 3

19

"""



Higher-Order Functions 3

Environment Diagrams
1.1 Draw the environment diagram for the following code:

def curry2(h):

def f(x):

def g(y):

return h(x, y)

return g

return f

make_adder = curry2(lambda x, y: x + y)

add_three = make_adder(3)

five = add_three(2)



4 Higher-Order Functions

1.2 Draw the environment diagram that results from running the following code:

n = 7

def f(x):

n = 8

return x + 1

def g(x):

n = 9

def h():

return x + 1

return h

def f(f, x):

return f(x + n)

f = f(g, n)

g = (lambda y: y())(f)



Higher-Order Functions 5

1.3 The following question is extremely difficult. Something like this would not appear

on the exam. Nonetheless, it’s a fun problem to try.

Draw the environment diagram for the following code: (Note that using the +

operator with two strings results in the second string being appended to the first.

For example "C" + "S" concatenates the two strings into one string "CS")

y = "y"

h = y

def y(y):

h = "h"

if y == h:

return y + "i"

y = lambda y: y(h)

return lambda h: y(h)

y = y(y)(y)


