
CS 61A Control and Environments
Summer 2017 Discussion 1: June 22, 2017

1 Control
Control structures direct the flow of logic in a program. For example, conditionals

(if-elif-else) allow a program to skip sections of code, while iteration (while),

allows a program to repeat a section.

If statements
if <conditional expression>:

<suite of statements>

elif <conditional expression>:

<suite of statements>

else:

<suite of statements>

Conditional statements let programs execute different lines of code depending

on certain conditions. Let’s review the if- elif-else syntax.

Recall the following points:

• The else and elif clauses are optional, and you can have any number of elif

clauses.

• A conditional expression is a expression that evaluates to either a true

value (True, a non-zero integer, etc.) or a false value (False, 0, None, "", [],

etc.).

• Only the suite that is indented under the first if/elif with a conditional

expression evaluating to a true value will be executed.

• If none of the conditional expressions evaluate to a true value, then the

else suite is executed. There can only be one else clause in a conditional

statement!

Boolean Operators
>>> not None

True

>>> not True

False

>>> -1 and 0 and 1

0

>>> False or 9999 or 1/0

9999

Python also includes the boolean operators and, or, and not. These operators

are used to combine and manipulate boolean values.

• not returns the opposite truth value of the following expression.

• and stops evaluating any more expressions (short-circuits) once it reaches the

first false value and returns it. If all values evaluate to a true value, the last

value is returned.

• or short-circuits at the first true value and returns it. If all values evaluate to

a false value, the last value is returned.

2 Control and Environments

Questions
1.1 Alfonso will only wear a jacket outside if it is below 60 degrees or it is raining. Fill

in the function wears jacket which takes in the current temperature and a Boolean

value telling if it is raining and returns True if Alfonso will wear a jacket and False

otherwise.

This should only take one line of code!

def wears_jacket(temp, raining):

"""

>>> wears_jacket(90, False)

False

>>> wears_jacket(40, False)

True

>>> wears_jacket(100, True)

True

"""

1.2 To handle discussion section overflow, TAs may direct students to a more empty

section that is happening at the same time. Write the function handle overflow,

which takes in the number of students at two sections and prints out what to do if

either section exceeds 30 students. Note: Don’t worry about printing “spot” for

singular values and “spots” for multiple values.

def handle_overflow(s1, s2):

"""

>>> handle_overflow(27, 15)

No overflow.

>>> handle_overflow(35, 29)

1 spot left in Section 2.

>>> handle_overflow(20, 32)

10 spots left in Section 1.

>>> handle_overflow(35, 30)

No space left in either section.

"""

Control and Environments 3

While loops
while <conditional clause>:

<body of statements>
Iteration lets a program repeat statements multiple times. A common iterative

block of code is the while loop.

As long as <conditional clause> evaluates to a true value, <body of statements>

will continue to be executed. The conditional clause gets evaluated each time the

body finishes executing.

Questions
1.1 What is the result of evaluating the following code?

def square(x):

return x * x

def so_slow(num):

x = num

while x > 0:

x = x + 1

return x / 0

square(so_slow(5))

1.2 Fill in the is prime function, which returns True if n is a prime number and False

otherwise. After you have a working solution, think about potential ways to make

your solution more efficient.

Hint: use the % operator: x % y returns the remainder of x when divided by y.

def is_prime(n):

4 Control and Environments

2 Environment Diagrams
An environment diagram keeps track of all the variables that have been defined

and the values they are bound to.

x = 3

def square(x):

return x ** 2

square(2)

When you execute assignment statements in an environment diagram (like x = 3),

you need to record the variable name and the value:

1. Evaluate the expression on the right side of the = sign

2. Write the variable name and the expression’s value in the current frame.

When you execute def statements, you need to record the function name and bind

the function object to the name.

1. Write the function name (e.g., square) in the frame and point it to a func-

tion object (e.g., func square(x) [parent=Global]). The [parent=Global]

denotes the frame in which the function was defined.

When you execute a call expression (like square(2)), you need to create a new

frame to keep track of local variables.

1. Draw a new frame. a Label it with

• a unique index (f1, f2, f3 and so on)

• the intrinsic name of the function (square), which is the name of

the function object itself. For example, if the function object is func

square(x) [parent=Global], the intrinsic name is square.

• the parent frame ([parent=Global])

2. Bind the formal parameters to the arguments passed in (e.g. bind x to 3).

3. Evaluate the body of the function.

If a function does not have a return value, it implicitly returns None. Thus, the

“Return value” box should contain None.

aSince we do not know how built-in functions like add(...) or min(...) are implemented, we

do not draw a new frame when we call built-in functions.

Control and Environments 5

Questions
2.1 Draw the environment diagram that results from running the following code.

a = 1

def b(b):

return a + b

a = b(a)

a = b(a)

2.2 Draw the environment diagram so we can visualize exactly how Python evaluates

the code. What is the output of running this code in the interpreter?

>>> from operator import add

>>> def sub(a, b):

... sub = add

... return a - b

>>> add = sub

>>> sub = min

>>> print(add(2, sub(2, 3)))

