
CS 61A Welcome to Python
Summer 2017 Discussion 0: June 20, 2017

1 Expressions
An expression describes a computation and evaluates to a value.

Primitive Expressions
>>> 2

2

>>> 'Hello World!'

'Hello World!'

A primitive expression requires only a single evaluation step: you either look up

the value of a name, or use the literal value directly. For example, numbers, names,

and strings are all primitive expressions.

Call Expressions
A call expression applies a function, which may or may not accept arguments.

The call expression evaluates to the function’s return value.

The syntax of a function call:

add︸︷︷︸
Operator

(2︸︷︷︸
Operand 0

, 3︸︷︷︸
Operand 1

)

Every call expression requires a set of parentheses delimiting its comma-separated

operands.

To evaluate a function call:

1. First evaluate the operator, and then the operands (from left to right).

2. Apply the function (the value of the operator) to the arguments (the values

of the operands).

If an operand is a nested call expression, then these two steps are applied to that

operand in order to evaluate it.

Questions
1.1 What would Python display?

>>> x = 6

>>> def square(x):

... return x * x

>>> square(x)

>>> max(pow(2, 3), square(-5)) - square(4)

2 Welcome to Python

1.2 What would Python display?

>>> from operator import sub, mul

>>> def print_sub(x, y):

... print('sub')

... return sub(x, y)

>>> def print_mul(x, y):

... print('mul')

... return mul(x, y)

>>> print_sub(print_mul(505, 4), 3)

2 Statements
A statement in Python is executed by the interpreter to achieve an effect.

Assignment Statements
>>> x = 6

>>> x

6

>>> x = 7

>>> x

7

For example, an assignment statement assigns a certain value to a variable name.

At the right, Python assigns the value of the expression 6 to the name x. Since 6

is a primitive (a number), its value is 6. Therefore, Python creates a binding from

the name x to 6.

Of course, variables can be reassigned to new values. At the right, x was reassigned

to 7.

def Statements
>>> def square(x):

... return x * x

>>> square(5)

25

The def statement defines functions.

When a def statement is executed, Python creates a binding from the name (e.g.

square) to a function. The variables in parentheses are the function’s parameters

(in this case, x is the only parameter). When the function is called, the body of the

function is executed (in this case, return x * x).

Welcome to Python 3

Questions
2.1 Determine the result of evaluating the following functions in the Python interpreter:

>>> from operator import add

>>> def double(x):

... return x + x

>>> def square(y):

... return y * y

>>> def f(z):

... add(square(double(z)), 1)

>>> f(4)

2.2 What is the result of evaluating the following code?

>>> from operator import add

>>> def square(x):

... return x * x

>>> def fun(num):

... return num

... num / 0

>>> square(fun(5))

2.3 What would Python display?

>>> x = 10

>>> def foo():

... return x

>>> def bar(x):

... return x

>>> def foobar(new_value):

... x = new_value

... y = x + 1

... return x

>>> foo()

>>> bar(5)

>>> foobar(20)

4 Welcome to Python

>>> x

>>> y

2.4 What would Python display?

>>> def cake(batter):

... return batter

>>> def pan(x, y):

... y = y + 20

... return x(y)

>>> pan(print, 10)

>>> pan(cake, cake(30))

2.5 Write a function, decades ago, that takes a year in the past (before 2017) and

returns the number of decades that have passed since. A function signature with a

doctest (an example execution) is below. Fill it in so that the doctest will pass!

def decades_ago(year):

"""Returns the number of decades that have passed between

the year and 2017.

>>> decades_ago(1995)

2.2

"""

Welcome to Python 5

3 Side Effects
Pure and Non-Pure Functions

1. Pure functions have no side effects – they only produce a return value. They

will always evaluate to the same result, given the same argument value(s).

2. Non-pure functions produce side effects, such as printing to your terminal.

Later in the semester, we will expand on the notion of a pure function versus a

non-pure function.

Questions
3.1 What would Python display for the following?

>>> def om(cookie):

... return cookie

>>> def nom(cookie):

... print(cookie)

>>> om(4)

>>> nom(4)

>>> joyce = om(-4)

>>> joyce + 1

>>> michelle = nom(4)

>>> michelle + 1

