
CS 61A Structure and Interpretation of Computer Programs
Summer 2017 Quiz 6

INSTRUCTIONS

• You have 10 minutes to complete this quiz.

• The exam is closed book, closed notes, closed computer, closed calculator.

• The final score for this quiz will be assigned based on effort rather than correctness.

• Mark your answers on the exam itself. We will not grade answers written on scratch paper.

• For multiple choice questions,

– 2 means mark all options that apply
– # means mark a single choice

Last name

First name

Student ID number

CalCentral email (_@berkeley.edu)

Teaching Assistant

Alex Stennet

Angela Kwon

Ashley Chien

Joyce Luong

Karthik Bharathala

Kavi Gupta

Kelly Chen

Michael Gibbes

Michelle Hwang

Mitas Ray

Rocky Duan

Samantha Wong

Name of the person to your left

Name of the person to your right

All the work on this exam is my own.
(please sign)

http://berkeley.edu

2

1. (5 points) Trieing to Get All the Points

A trie is a type of tree where the values of each node are letters representing part of a larger word. A valid
word is a string containing the letters along any path from root to leaf. For simplicity, assume that our trie is
represented with the tree abstract data type and where the value of each node contains just a single letter.

>>> greetings = tree('h', [tree('i'),
... tree('e', [tree('l', [tree('l', [tree('o')])]),
... tree('y')])])
>>> print_tree(greetings)
h
i
e
l
l
o

y

Recall: The tree abstract data type is defined with the following constructors and selectors.

def tree(root, branches=[]):
return [root] + list(branches)

def root(tree):
return tree[0]

def branches(tree):
return tree[1:]

def is_leaf(tree):
return not branches(tree)

(a) (5 pt) Define a function, collect_words, that takes in a trie t and returns a Python list with all the
words contained in the trie.

def collect_words(t):
"""Return a list of all the words contained in the tree where the value of each node in
the tree is an individual letter. Words terminate at the leaf of a tree.

>>> collect_words(greetings)
['hi', 'hello', 'hey']
"""

if ___:

__

words = __

__

words += ___

return words

Name: 3

DO NOT TURN IN THIS PAGE.

>>> greetings = tree('h', [tree('i'),
... tree('e', [tree('l', [tree('l', [tree('o')])]),
... tree('y')])])
>>> print_tree(greetings)
h
i
e
l

l
o

y

(b) (0 pt) Extra Practice
Define a function, has_path, that takes in a trie t and a string word. It returns True if there is a path
that starts from the root where the letters along the path spell out the word, and False otherwise.

def has_word(t, word):
"""Return whether there is a path spelling out word in the trie t.

>>> has_word(greetings, 'h')
True
>>> has_word(greetings, 'i')
False
>>> has_word(greetings, 'hi')
True
>>> has_word(greetings, 'hello')
True
>>> has_word(greetings, 'hey')
True
>>> has_word(greetings, 'bye')
False
"""

if ___:

return ___

elif ___:

return ___

__

__

__

return ___

DO NOT TURN IN THIS PAGE.

