
CS 61A Structure and Interpretation of Computer Programs
Summer 2017 Quiz 5

INSTRUCTIONS

• You have 10 minutes to complete this quiz.

• The exam is closed book, closed notes, closed computer, closed calculator.

• The final score for this quiz will be assigned based on effort rather than correctness.

• Mark your answers on the exam itself. We will not grade answers written on scratch paper.

• For multiple choice questions,

– 2 means mark all options that apply
– # means mark a single choice

Last name

First name

Student ID number

CalCentral email (_@berkeley.edu)

Teaching Assistant

Alex Stennet

Angela Kwon

Ashley Chien

Joyce Luong

Karthik Bharathala

Kavi Gupta

Kelly Chen

Michael Gibbes

Michelle Hwang

Mitas Ray

Rocky Duan

Samantha Wong

Name of the person to your left

Name of the person to your right

All the work on this exam is my own.
(please sign)

http://berkeley.edu

2

1. (5 points) Return of the Jedi

Let’s implement a data abstraction for basketball players. Our constructor takes in a name, a position (1, 2,
3, 4, or 5), and, optionally, a backup position. Our selectors retrieve information about a player.

def player(name, position, backup=None): # if no backup position, default to None
return {'name': name, 'position': position, 'backup': backup}

def name(player):
return player['name']

def position(player):
return player['position']

def backup(player):
return player['backup']

def insert(lst, elem):
"""Add elem to lst if elem is not already contained in lst.

>>> insert(insert([1, 2, 3], 5), 2)
[1, 2, 3, 5]
"""
return lst if elem in lst else lst + [elem]

When we make a basketball team, we want to make sure that there is at least one player for each position. So
we define a function check_team that takes in a non-empty list of players. check_team returns True if there is
at least one player per position, and False otherwise.

The following implementation works, but it breaks abstraction barriers! Fill in the square to the left of each
line that breaks an abstraction barrier. Then, cross out each violation and, above the original expression, write
some replacement code that has no violations and maintains correctness.

2

2

2

2

2

2

2

2

2

2

2

def check_team(players):
"""Make sure there is at least one player per position.

>>> check_team([player('Steph', 1), player('KD', 3, 4), player('Klay', 2),
... player('Iggy', 4, 3), player('Dray', 4, 5)])
True
>>> check_team([player('LeBron', 3, 4), player('Kyrie', 1), player('Love', 4, 5)]
False
"""
def checker(players, covered):

if len(covered) == 5:

return True

elif len(players) == 0:

return False

p = players[0]

in_main_role = checker(players[1:], insert(covered, p['position']))

if p['backup'] != None:

in_backup_role = checker(players[1:], insert(covered, p['backup']))

return in_main_role or in_backup_role

return in_main_role

return checker(players, [])

