
CS 61A Interpreters & Iterators
Summer 2017 Mentoring 12: July 31, 2017

1 Eval and Apply
1.1 Circle the number of calls to scheme_eval and scheme_apply for the code below.

(define (square x) (* x x))

(+ (square 3) (- 3 2))

Calls to scheme_eval 2 5 14 24

Calls to scheme_apply 1 2 3 4

2 Tail Calls
2.1 (a) What is tail context, tail calls, and tail recursive functions?

(b) Why are tail calls useful for recursive functions?

2.2 (define (sum-list lst)

(if (null? lst)

0

(+ (car lst) (sum-list (cdr lst)))

)

)

(a) Why is sum-list not a tail call? Optional: draw out the environment diagram

of this sum-list with list: (1 2 3). When do you add 2 and 3?

(b) Rewrite sum-list in a tail recursive context.



2 Interpreters & Iterators

3 Iterators
3.1 What is difference between an iterator and an iterable?

3.2 Write an iterator that takes in a list and returns the sum of the list thus far.

>>> accu = Accumulator([1, 2, 3, 4, 5, 6])

>>> for a in accu:

... print(a)

1

3

6

10

15

21

3.3 Is this an iterator or an iterable or both?

3.4 Write Accumulator so it works if it takes in any iterable, not just a list



Interpreters & Iterators 3

4 Generators
4.1 What does the following code block output?

def foo():

a = 0

if a < 10:

print("Hello")

yield a

print("World")

for i in foo():

print(i)

4.2 How can we modify foo so that list(foo()) == [1, 2, 3, . . . , 10]? (It’s okay if

the program prints along the way.)



4 Interpreters & Iterators

4.3 Define hailstone_sequence, a generator that yields the hailstone sequence. Remem-

ber, for the hailstone sequence, if n is even, we need to divide by two, otherwise, we

multiply by 3 and add by 1.

def hailstone_sequence(n):

"""

>>> hs_gen = hailstone_sequence(10)

>>> hs_gen.__next__()

10

>>> next(hs_gen) #equivalent to previous

5

>>> for i in hs_gen:

>>> print(i)

16

8

4

2

1

"""

4.4 Define tree_sequence, a generator that iterates through a tree by first yielding the

root value and then yielding each branch.

def tree_sequence(t):

"""

>>> t = Tree(1, [Tree(2, [Tree(5)]), Tree(3, [Tree(4)])])

>>> print(list(tree_sequence(t)))

[1, 2, 5, 3, 4]

"""


	Eval and Apply
	Tail Calls
	Iterators
	Generators

