
CS 61A Higher-Order Functions
Summer 2017 Mentoring 3: June 28, 2017

1 Higher-Order Functions
1.1 Draw the environment diagram that results from running the code.

x = 20

def foo(y):

x = 5

def bar():

return lambda y: x - y

return bar

y = foo(7)

z = y()

print(z(2))

1.2 What’s the difference here?

x = 20

def bar():

return lambda y: x - y

def foo(y):

x = 5

return bar

y = foo(7)

z = y()

print(z(2))

1.3 Why and where do we use lambda and higher-order functions?



2 Higher-Order Functions

1.4 Consider the following method.

def make_adder(x):

def adder(n):

return x + n

return adder

make_adder(4)(5)

(a) What is the operator of the above expression?

(b) What are the operands?

(c) Draw the expression tree.

1.5 Write a higher-order function that passes the following doctests.

Challenge: Write the function body in one line.

def mystery(f, x):

"""

>>> from operator import add, mul

>>> a = mystery(add, 3)

>>> a(4) # add(3, 4)

7

>>> a(12)

15

>>> b = mystery(mul, 5)

>>> b(7) # mul(5, 7)

35

>>> b(1)

5

>>> c = mystery(lambda x, y: x * x + y, 4)

>>> c(5)

21

>>> c(7)

23

"""

1.6 What would Python display?

>>> foo = mystery(lambda a, b: a(b), lambda c: 5 + square(c))

>>> foo(-2)



Higher-Order Functions 3

1.7 Draw the environment diagram that results from running the code.

def dream1(f):

kick = lambda x: mind()

def dream2(secret):

mind = f(secret)

kick(2)

return dream2

inception = lambda secret: lambda: secret

real = dream1(inception)(42)

1.8 Fill in the blanks (without using any numbers in the first blank) such that the entire

expression evaluates to 9.

(lambda x: lambda y: ___________________)(_______)(lambda z: z*z)()

1.9 Draw the environment diagram that results from running the code.

apple = 4

def orange(apple):

apple = 5

def plum(x):

return lambda plum: plum * 2

return plum

orange(apple)("hiii")(4)


	Higher-Order Functions

