
CS 61A Midterm Review
Summer 2017 July 12, 2017

Instructions

Form a small group. Start on problem 1.1. Check off with a staff member or discuss

your solution process with a nearby group when you think everyone in your group

understands how to solve problem 1.1. Then repeat for 1.2, 1.3, . . .

You may not move to the next problem until you check off or discuss with another

group and everyone understands why the solution is what it is. You may use any

course resources at your disposal: the purpose of this review session is to have

everyone learning together as a group.

1 Functions
1.1 Explain the difference between the following:

(a) >>> def square(x):

... return x * x

Defines a function called square.

(b) >>> square(4)

Calls the function, square.

(c) >>> square

Evaluates to the function that squares its input number.

1.2 What would Python display?

(a) (lambda x: x(x))(lambda y: 4)

4

(b) (lambda x, y: y(x))(mul, lambda a: a(3, 5))

2 Midterm Review

15

1.3 Implement make_alternator.

def make_alternator(f, g):

"""

>>> a = make_alternator(lambda x: x * x, lambda x: x + 4)

>>> a(5)

1

6

9

8

25

"""

def alternator(n):

i = 1

while i <= n:

if i % 2 == 1:

print(f(i))

else:

print(g(i))

i += 1

return alternator

2 Lists & Tree Recursion
Mutative (destructive) operations change the state of a list by adding, removing, or

otherwise modifying the list itself.

• lst.append(element)

• lst.extend(lst)

• lst.pop(index)

• lst += lst (not lst = lst + lst)

• lst[i] = x

• lst[i:j] = lst

Non-mutative (non-destructive) operations include the following.

• lst + lst

• lst * n

• lst[i:j]

• list(lst)

Midterm Review 3

Recall : To execute assignment statements,

• Evaluate all expressions to the right of the = sign

• Bind all names to the left of the = to those resulting values

The Golden Rule of Equals describes how this rule behaves with composite

values. Composite values, such as functions and lists, are connected by a pointer.

When an expression evaluates to a composite value, we are returned the pointer to

that value, rather than the value itself.

In an environment diagram, we can summarize this rule with,

Copy exactly what is in the box!

2.1 Write a list comprehension that accomplishes each of the following tasks.

(a) Square all the elements of a given list, lst.

[x ** 2 for x in lst]

(b) Compute the dot product of two lists lst1 and lst2. Hint : The dot product is

defined as lst1[0] · lst2[0] + lst1[1] · lst2[1] + . . . + lst1[n] · lst2[n]. The Python

zip function may be useful here.

sum([x * y for x, y in zip(lst1, lst2)])

(c) Return a list of lists such that lol = [[0], [0, 1], [0, 1, 2], [0, 1, 2, 3],

[0, 1, 2, 3, 4]].

[[x for x in range(y)] for y in range(1, 6)]

(d) Return the same list as above, except now excluding every instance of the

number 2: lold = [[0], [0, 1], [0, 1], [0, 1, 3], [0, 1, 3, 4]]).

[[x for x in range(y) if x != 2] for y in range(1, 6)]

2.2 Draw the environment diagram that results from running the following code.

pom = [16, 15, 13]

pompom = pom * 2

pompom.append(pom[:])

pom.extend(pompom)

https://goo.gl/ZU1V7h

https://goo.gl/ZU1V7h

4 Midterm Review

2.3 Draw the environment diagram that results from running the following code.

bless, up = 3, 5

another = [1, 2, 3, 4]

one = another[1:]

another[bless] = up

another.append(one.remove(2))

another[another[0]] = one

one[another[0]] = another[1]

one = one + [another.pop(3)]

another[1] = one[1][1][0]

one.append([one.pop(1)])

https://goo.gl/FyMmbJ

2.4 def jerry(jerry):

def jerome(alex):

alex.append(jerry[1:])

return alex

return jerome

ben = ['nice', ['ice']]

jerome = jerry(ben)

alex = jerome(['cream'])

ben[1].append(alex)

ben[1][1][1] = ben

print(ben)

https://goo.gl/uhSClr

https://goo.gl/FyMmbJ
https://goo.gl/uhSClr

Midterm Review 5

2.5 Implement subset_sum, which takes in a list of integers and a number k and returns

whether there is a subset of the list that adds up to k? Hint : Use the in operator

to determine if an element belongs to a list.

>>> 3 in [1, 2, 3]

True

>>> 4 in [1, 2, 3]

False

def subset_sum(seq, k):

"""

>>> subset_sum([2, 4, 7, 3], 5) # 2 + 3 = 5

True

>>> subset_sum([1, 9, 5, 7, 3], 2)

False

"""

if len(seq) == 0:

return False

elif k in seq:

return True

else:

return subset_sum(seq[1:], k - seq[0]) or subset_sum(seq[1:], k)

2.6 Implement subsets, which takes in a list of values and an integer n and returns all

subsets of the list of size exactly n in any order.

def subsets(lst, n):

"""

>>> three_subsets = subsets(list(range(5)), 3)

>>> for subset in sorted(three_subsets):

... print(subset)

[0, 1, 2]

[0, 1, 3]

[0, 1, 4]

[0, 2, 3]

[0, 2, 4]

[0, 3, 4]

[1, 2, 3]

[1, 2, 4]

[1, 3, 4]

[2, 3, 4]

"""

if n == 0:

return [[]]

if len(lst) == n:

return [lst]

with_first = [[lst[0]] + x for x in subsets(lst[1:], n - 1)]

without_first = subsets(lst[1:], n)

return with_first + without_first

6 Midterm Review

3 Recursion on Trees
def tree(root, branches=[]):

return [root] + list(branches)

def root(tree):

return tree[0]

def branches(tree):

return tree[1:]

3.1 A min-heap is a tree with the special property that every node’s value is less than

or equal to the values of all of its branches.

1

5

7

3

9 4

6

1

5

7

3

9 2

6

Implement is_min_heap which takes in a tree and returns whether the tree satisfies

the min-heap property or not.

def is_min_heap(t):

for b in branches(t):

if root(t) > root(b) or not is_min_heap(b):

return False

return True

4 Growth
4.1 Give a tight asymptotic runtime bound for the following functions in Θ(·) notation,

or “Infinite” if the program does not terminate.

(a) def one(n):

while n > 0:

n = n // 2

Θ(log n)

(b) def two(n):

for i in range(n):

for j in range(i):

print(str(i), str(j))

Θ(n2)

(c) def three(n):

i = 1

while i <= n:

for j in range(i):

print(j)

i *= 2

Θ(n)

Midterm Review 7

For each of the questions below, give a Θ(·) bound on the asymptotic runtime.

4.2 def strange_add(n):

if n == 0:

return 1

else:

return strange_add(n - 1) + strange_add(n - 1)

Θ(2n). To see this, try drawing out the call tree. Each level will create two new

calls to strange_add, and there are n levels. Therefore, 2n calls.

4.3 def belgian_waffle(n):

i = 0

total = 0

while i < n:

for j in range(n ** 2):

total += 1

i += 1

return total

Θ(n3). Inner loop runs n2 times, and the outer loop runs n times. To get the total,

multiply those together.

4.4 def flip(n):

return -n

def pancake(n):

if n < 1:

return 1

return flip(n) + pancake(n - 1) + pancake(n - 1)

Θ(2n). flip contributes only a constant amount of time to each call so this is just

like strange_add.

4.5 def toast(n):

i = 0

j = 0

stack = 0

while i < n:

stack += pancake(n)

i += 1

while j < n:

stack += 1

j += 1

return stack

O(n · 2n). There are two loops: the first runs n times with each iteration taking

Θ(2n) time for a total of Θ(n ·2n). The second loop runs n times with each iteration

taking constant time for a total of Θ(n). When computing the order of growth,

however, we focus on the dominating term – in this case, Θ(n · 2n + n) ∈ Θ(n · 2n).

	Functions
	Lists & Tree Recursion
	Recursion on Trees
	Growth

