CS 61A Structure and Interpretation of Computer Programs Summer 2017

- You have 1 hours and 20 minutes to complete this exam.
- This exam is closed book, closed notes, closed computer, closed calculator, except four 8.5 " $\times 11$ " cheat sheets.
- Mark your answers on the exam itself. We will not grade answers written on scratch paper.
- For multiple choice questions, fill in each option or choice completely.
-means mark all options that apply
- \bigcirc means mark a single choice

Last name	
First name	
Student ID number	
CalCentral email (_@berkeley.edu)	
Teaching Assistant	Alex Stennet Kelly Chen Angela Kwon Michael Gibbes Ashley Chien Michelle Hwang Joyce Luong Mitas Ray Karthik Bharathala Rocky Duan Kavi Gupta Samantha Wong
Name of the person to your left	
Name of the person to your right	
All the work on this exam is my own. (please sign)	

0. (0 points) Determination What's been fun? What are you grateful for?

1. (10 points) Talking to Ducks

For each of the expressions in the table below, write the output displayed by the interactive Python interpreter when the expression is evaluated. The output may have multiple lines. If an error occurs, write "Error", but include all output displayed before the error. If a function value is displayed, write "Function".

```
class Duck:
    family = []
    ducks = 0
    def __init__(self, name):
        self.name = name
        Duck.family.append(self)
        Duck.ducks += 1
    def __iter__(self):
        while True:
            yield Duck.family[0]
            first = Duck.family.pop(0)
            Duck.family.append(first)
    def __str__(self):
        return 'A Duck'
    def __repr__(self):
        return 'Duck("' + self.name + '")'
```

```
class Duckling:
    mother_duck = Duck
    def __init__(self, name):
        Duck.__init__(self, name)
        ducks = 0
    def __repr__(self):
        return 'Duckling("' + self.name + '")'
```

class Swan(Duckling):
def __init__(self, name='Autumn'):
Duckling.__init__(self, name)
self.mother_duck = self.mother_duck('Swan')
def __iter__(self):
Duckling.next = Duck.__iter__(self)
while True:
yield next(Duckling.next)
drake = Duckling('Drake')
helen = drake.mother_duck('Helen')
drakerator = iter(helen)

Expression	Interactive Output
pow(2, 3)	8
print(4, 5) +1	4 5 Error
print(print(next(drakerator)), next(drakerator))	Duckling("Drake") None A Duck
Duck.ducks	2
different = Swan() different.mother_duck.ducks	4
next(iter(different))	Duck("Helen")
Duck.family[-2:]	Duck("Swan")
clean(different.mother_duck)	Duck("Swan")
Duck.family[-1]	

2. (8 points) A Link to the Past

Implement slice_reverse which takes a linked list s and mutatively reverses the elements on the interval, $[i, j)$ (including i but excluding j). Assume s is zero-indexed, $0<i<j$, and that s has at least j elements.
You must use mutation; solutions which call the Link constructor will not receive credit. The Link class reference is provided below.

```
class Link:
    empty = ()
    def __init__(self, first, rest=empty):
        assert rest is Link.empty or isinstance(rest, Link)
        self.first = first
        self.rest = rest
def slice_reverse(s, i, j):
    H
    >>> s = Link(1, Link(2, Link(3)))
    >>> slice_reverse(s, 1, 2)
    >>> S
    Link(1, Link(2, Link(3)))
    >>> s = Link(1, Link(2, Link(3, Link(4, Link(5)))))
    >>> slice_reverse(s, 2, 4)
    >>> s
    Link(1, Link(2, Link(4, Link(3, Link(5)))))
    """
    start = s
    for _ in range(i - 1):
        start = start.rest
    reverse = Link.empty
    current = start.rest
    for _ in range(j - i):
        rest = current.rest
        current.rest = reverse
        reverse = current
        current = rest
    start.rest.rest = current
    start.rest = reverse
```


3. (6 points) Lost Woods

(a) (4 pt) A Binary Search Tree is a tree where each node contains either 0 , 1 , or 2 nodes and where the left branch (if present) contains values strictly less than $(<)$ the root value, and the right branch (if present) contains values strictly greater than $(>)$ the root value. The definition is recursive: both the left and right branches must themselves also be BST for the entire tree to be a BST.
Implement is_binary which that takes in a Tree t, and returns True if t is a Binary Search Tree and False otherwise. Trees can contain any number of branches, but if a tree contains only one branch, interpret it as a left branch.

```
class Tree:
    def __init__(self, root, branches=[]):
            self.root = root
            self.branches = list(branches)
        def is_leaf(self):
            return not self.branches
    def is_binary(t):
        def binary(t, lo, hi):
    if lo < t.root < hi:
            if t.is_leaf():
                return True
            elif len(t.branches) == 1 and t.branches[0].root < t.root:
                return binary(t.branches[0], lo, t.root)
            elif len(t.branches) == 2 and t.branches[0].root < t.root < t.branches[1].root:
                return binary(t.branches[0], lo, t.root) and binary(t.branches[1], t.root, hi)
            return False
        return binary(t, float('-inf'), float('inf'))
```

(b) (1 pt) Choose the $\Theta(\cdot)$ expression that best describes the runtime of is_binary on a well-formed binary search tree with n nodes. Assume the implementation of is_binary is optimal.$\Theta(1) \bigcirc \Theta(\log n) \bigcirc \Theta(n) \bigcirc \Theta(n \log n) \bigcirc \Theta\left(n^{2}\right) \bigcirc \Theta\left(n^{3}\right) \bigcirc \Theta\left(2^{n}\right) \bigcirc \Theta\left(3^{n}\right)$
(c) (1 pt) Choose the $\Theta(\cdot)$ expression that best describes the runtime of is_binary on a tree where each node contains 3 branches and the overall height of the tree is n. Assume the implementation of is_binary is optimal.

$$
\Theta(1) \bigcirc \Theta(\log n) \bigcirc \Theta(n) \bigcirc \Theta(n \log n) \bigcirc \Theta\left(n^{2}\right) \bigcirc \Theta\left(n^{3}\right) \bigcirc \Theta\left(2^{n}\right) \bigcirc \Theta\left(3^{n}\right)
$$

4. (0 points) Designated Exam Chillout Zone

5. (8 points)

(a) (4 pt) Implement merge which takes in two sorted lists of numbers and returns a new sorted list containing all the values. Ties can be broken in either direction.

```
(define (merge lst1 lst2)
    (cond ((null? lst1) lst2)
            ((null? lst2) lst1)
            ((< (car lst1) (car lst2)) (cons (car lst1) (merge (cdr lst1) lst2)))
            (else (cons (car lst2) (merge lst1 (cdr lst2))))
        ))
scm> (merge '(1 1 2 3 4 5) '(\begin{array}{llllll}{7}&{8}&{9}&{10))}\end{array})
(1 2 3 4 5 6 7 8 9 10)
scm> (merge '(1 3 5 7 9) '(2 4 6 8 10))
(1 2 3 4 5 6 7 8 9 10)
scm> (merge '(3 4 7 9 10) '(1 2 5 6 8))
(1 2 3 4 5 6 7 8 9 10)
scm> (merge '() '())
()
```

(b) (1 pt) Choose the $\Theta(\cdot)$ expression that best describes the runtime of merge where the length of each list is n. Assume the implementation of merge is correct, optimized, but not tail-recursive.
$\bigcirc \Theta(1) \bigcirc \Theta(\log n) \bigcirc \Theta(n) \bigcirc \Theta(n \log n) \bigcirc \Theta\left(n^{2}\right) \bigcirc \Theta\left(n^{3}\right) \bigcirc \Theta\left(2^{n}\right) \bigcirc \Theta\left(3^{n}\right)$
(c) (1 pt) Choose the $\Theta(\cdot)$ expression that best describes the number of frames opened during the execution of merge where the length of each list is n. Assume the implementation of merge is correct, optimized, but not tail-recursive.$\Theta(1)$$\Theta(\log n)$
$\Theta(n) \bigcirc$ $\Theta(n \log n) \bigcirc \Theta\left(n^{2}\right)$$\Theta\left(n^{3}\right)$$\Theta\left(2^{n}\right)$$\Theta\left(3^{n}\right)$
(d) (1 pt) Implement trimerge which takes in three sorted lists of numbers and returns a new sorted list containing all the values. You may use merge; assume it is implemented correctly.

```
(define (trimerge lst1 lst2 lst3)
        (merge lst1 (merge lst2 lst3))
    )
    scm> (trimerge '(1 2 3) '(4 5 6) '(7 8 9))
    (1 2 3 4 5 6 7 8 9)
    scm> (trimerge '(3 7 8) '(1 4 5) '(2 6 9))
    (1 2 3 4 5 6 7 8 9)
    scm> (trimerge '() '() '())
    ()
```

(e) (1 pt) Choose the $\Theta(\cdot)$ expression that best describes the runtime of trimerge where the length of each list is n. Assume the implementation of trimerge is optimal.$\Theta(\log n)$
$\Theta(n)$$\Theta(n \log n)$$\Theta\left(n^{2}\right)$$\Theta\left(n^{3}\right)$$\Theta\left(2^{n}\right)$$\Theta\left(3^{n}\right)$

6. (8 points) Telephoney Booth

Suppose you're analyzing data collected from a regional telephone operator. Their database consists of the following schemas which define the columns of each table.

```
create table location(lname, areacode)
create table people(pid, pname, areacode)
create table calls(cid, date, from, to, duration)
```

- The areacode data in the people table references the area codes defined in location.
- The from and to columns of calls each reference one person's pid.
(a) (2 pt) Select the names of all pairs of people who called each other on the date 2017-07-04.

```
select p1.pname, p2.pname
        from people as p1, people as p2, calls as c
        where c.from = p1.pid and c.to = p2.pid and c.date = '2017-07-04';
```

(b) (3 pt) Select the name of the location and the number of calls to that location for the location which has had the most phone calls made to it.

```
select l.lname as name, count(*) as numcalls
        from location as l, people as p, calls as c
        where p.areacode = l.areacode and p.pid = c.to
        group by l.areacode
        order by numcalls desc limit 1;
```

(c) (3 pt) Select the name of the location of the person who made the longest call.

```
with durations as (select p.areacode as areacode, c.duration as duration
        from calls as c, people as p
        where c.from = p.pid)
    select l.lname
        from durations as d, location as l
        where l.areacode = d.areacode
        order by d.duration desc limit 1;
```

