
CS 61A Structure and Interpretation of Computer Programs
Summer 2017 Mock Final Solutions

• You have 1 hours and 20 minutes to complete this exam.

• This exam is closed book, closed notes, closed computer, closed calculator, except four 8.5” × 11” cheat sheets.

• Mark your answers on the exam itself. We will not grade answers written on scratch paper.

• For multiple choice questions, fill in each option or choice completely.

– 2 means mark all options that apply

– # means mark a single choice

Last name

First name

Student ID number

CalCentral email (_@berkeley.edu)

Teaching Assistant

Alex Stennet

Angela Kwon

Ashley Chien

Joyce Luong

Karthik Bharathala

Kavi Gupta

Kelly Chen

Michael Gibbes

Michelle Hwang

Mitas Ray

Rocky Duan

Samantha Wong

Name of the person to your left

Name of the person to your right

All the work on this exam is my own.
(please sign)

0. (0 points) Determination What’s been fun? What are you grateful for?

http://berkeley.edu

2

1. (10 points) Talking to Ducks

For each of the expressions in the table below, write the output displayed by the interactive Python interpreter
when the expression is evaluated. The output may have multiple lines. If an error occurs, write “Error”, but
include all output displayed before the error. If a function value is displayed, write “Function”.

class Duck:
family = []
ducks = 0

def __init__(self, name):
self.name = name
Duck.family.append(self)
Duck.ducks += 1

def __iter__(self):
while True:

yield Duck.family[0]
first = Duck.family.pop(0)
Duck.family.append(first)

def __str__(self):
return 'A Duck'

def __repr__(self):
return 'Duck("' + self.name + '")'

def clean(self):
self.family = []
return self

class Duckling:
mother_duck = Duck

def __init__(self, name):
Duck.__init__(self, name)
ducks = 0

def __repr__(self):
return 'Duckling("' + self.name + '")'

class Swan(Duckling):
def __init__(self, name='Autumn'):

Duckling.__init__(self, name)
self.mother_duck = self.mother_duck('Swan')

def __iter__(self):
Duckling.next = Duck.__iter__(self)
while True:

yield next(Duckling.next)

drake = Duckling('Drake')
helen = drake.mother_duck('Helen')
drakerator = iter(helen)

Expression Interactive Output
pow(2, 3) 8

print(4, 5) + 1
4 5
Error

print(print(next(drakerator)), next(drakerator))

Duckling("Drake")
None A Duck

Duck.ducks 2

different = Swan()
different.mother_duck.ducks

4

next(iter(different)) Duck("Helen")

Duck.family[-2:]
[Duckling("Autumn"), Duck("Swan")]

clean(different.mother_duck) Duck("Swan")

Duck.family[-1] Duck("Swan")

Name: 3

2. (8 points) A Link to the Past

Implement slice_reverse which takes a linked list s and mutatively reverses the elements on the interval, [i, j)
(including i but excluding j). Assume s is zero-indexed, 0 < i < j, and that s has at least j elements.

You must use mutation; solutions which call the Link constructor will not receive credit. The Link class
reference is provided below.

class Link:

empty = ()

def __init__(self, first, rest=empty):
assert rest is Link.empty or isinstance(rest, Link)
self.first = first
self.rest = rest

def slice_reverse(s, i, j):
"""
>>> s = Link(1, Link(2, Link(3)))
>>> slice_reverse(s, 1, 2)
>>> s
Link(1, Link(2, Link(3)))
>>> s = Link(1, Link(2, Link(3, Link(4, Link(5)))))
>>> slice_reverse(s, 2, 4)
>>> s
Link(1, Link(2, Link(4, Link(3, Link(5)))))
"""

start = s

for _ in range(i - 1):

start = start.rest

reverse = Link.empty

current = start.rest

for _ in range(j - i):

rest = current.rest

current.rest = reverse

reverse = current

current = rest

start.rest.rest = current

start.rest = reverse

4

3. (6 points) Lost Woods

(a) (4 pt) A Binary Search Tree is a tree where each node contains either 0, 1, or 2 nodes and where
the left branch (if present) contains values strictly less than (<) the root value, and the right branch (if
present) contains values strictly greater than (>) the root value. The definition is recursive: both the left
and right branches must themselves also be BST for the entire tree to be a BST.
Implement is_binary which that takes in a Tree t, and returns True if t is a Binary Search Tree and False
otherwise. Trees can contain any number of branches, but if a tree contains only one branch, interpret it
as a left branch.

class Tree:

def __init__(self, root, branches=[]):
self.root = root
self.branches = list(branches)

def is_leaf(self):
return not self.branches

def is_binary(t):

def binary(t, lo, hi):

if lo < t.root < hi:

if t.is_leaf():

return True

elif len(t.branches) == 1 and t.branches[0].root < t.root:

return binary(t.branches[0], lo, t.root)

elif len(t.branches) == 2 and t.branches[0].root < t.root < t.branches[1].root:

return binary(t.branches[0], lo, t.root) and binary(t.branches[1], t.root, hi)

return False

return binary(t, float('-inf'), float('inf'))

(b) (1 pt) Choose the Θ(·) expression that best describes the runtime of is_binary on a well-formed binary
search tree with n nodes. Assume the implementation of is_binary is optimal.

Θ(1) # Θ(log n) Θ(n) # Θ(n log n) # Θ(n2) # Θ(n3) # Θ(2n) # Θ(3n)

(c) (1 pt) Choose the Θ(·) expression that best describes the runtime of is_binary on a tree where each
node contains 3 branches and the overall height of the tree is n. Assume the implementation of
is_binary is optimal.

 Θ(1) # Θ(log n) # Θ(n) # Θ(n log n) # Θ(n2) # Θ(n3) # Θ(2n) # Θ(3n)

4. (0 points) Designated Exam Chillout Zone

Name: 5

5. (8 points)

(a) (4 pt) Implement merge which takes in two sorted lists of numbers and returns a new sorted list containing
all the values. Ties can be broken in either direction.

(define (merge lst1 lst2)

(cond ((null? lst1) lst2)

((null? lst2) lst1)

((< (car lst1) (car lst2)) (cons (car lst1) (merge (cdr lst1) lst2)))

(else (cons (car lst2) (merge lst1 (cdr lst2))))

))

scm> (merge '(1 2 3 4 5) '(6 7 8 9 10))
(1 2 3 4 5 6 7 8 9 10)
scm> (merge '(1 3 5 7 9) '(2 4 6 8 10))
(1 2 3 4 5 6 7 8 9 10)
scm> (merge '(3 4 7 9 10) '(1 2 5 6 8))
(1 2 3 4 5 6 7 8 9 10)
scm> (merge '() '())
()

(b) (1 pt) Choose the Θ(·) expression that best describes the runtime of merge where the length of each list
is n. Assume the implementation of merge is correct, optimized, but not tail-recursive.

Θ(1) # Θ(log n) Θ(n) # Θ(n log n) # Θ(n2) # Θ(n3) # Θ(2n) # Θ(3n)

(c) (1 pt) Choose the Θ(·) expression that best describes the number of frames opened during the
execution of merge where the length of each list is n. Assume the implementation of merge is correct,
optimized, but not tail-recursive.

Θ(1) # Θ(log n) Θ(n) # Θ(n log n) # Θ(n2) # Θ(n3) # Θ(2n) # Θ(3n)

(d) (1 pt) Implement trimerge which takes in three sorted lists of numbers and returns a new sorted list
containing all the values. You may use merge; assume it is implemented correctly.

(define (trimerge lst1 lst2 lst3)

(merge lst1 (merge lst2 lst3))

)

scm> (trimerge '(1 2 3) '(4 5 6) '(7 8 9))
(1 2 3 4 5 6 7 8 9)
scm> (trimerge '(3 7 8) '(1 4 5) '(2 6 9))
(1 2 3 4 5 6 7 8 9)
scm> (trimerge '() '() '())
()

(e) (1 pt) Choose the Θ(·) expression that best describes the runtime of trimerge where the length of each
list is n. Assume the implementation of trimerge is optimal.

Θ(1) # Θ(log n) Θ(n) # Θ(n log n) # Θ(n2) # Θ(n3) # Θ(2n) # Θ(3n)

6

6. (8 points) Telephoney Booth

Suppose you’re analyzing data collected from a regional telephone operator. Their database consists of the
following schemas which define the columns of each table.

create table location(lname, areacode)
create table people(pid, pname, areacode)
create table calls(cid, date, from, to, duration)

• The areacode data in the people table references the area codes defined in location.

• The from and to columns of calls each reference one person’s pid.

(a) (2 pt) Select the names of all pairs of people who called each other on the date 2017-07-04.

select p1.pname, p2.pname

from people as p1, people as p2, calls as c

where c.from = p1.pid and c.to = p2.pid and c.date = '2017-07-04';

(b) (3 pt) Select the name of the location and the number of calls to that location for the location which has
had the most phone calls made to it.

select l.lname as name, count(*) as numcalls

from location as l, people as p, calls as c

where p.areacode = l.areacode and p.pid = c.to

group by l.areacode

order by numcalls desc limit 1;

(c) (3 pt) Select the name of the location of the person who made the longest call.

with durations as (select p.areacode as areacode, c.duration as duration

from calls as c, people as p

where c.from = p.pid)

select l.lname

from durations as d, location as l

where l.areacode = d.areacode

order by d.duration desc limit 1;

