
CS 61A Final Review
Summer 2017 August 7, 2017

Instructions

Form a small group. Start on problem 1.1. Check off with a staff member or discuss

your solution process with a nearby group when you think everyone in your group

understands how to solve problem 1.1. Then repeat for 1.2, 1.3, . . .

You may not move to the next problem until you check off or discuss with another

group and everyone understands why the solution is what it is. You may use any

course resources at your disposal: the purpose of this review session is to have

everyone learning together as a group.

1 Scheme
1.1 What would Scheme display?

(a) > '(1 2 3)

(b) > '(1 . (2 . (3 . ())))

(c) > '(((1 . 2) . 3) 4 . (5 . 6))

(d) > (cons 1 2)

(e) > (cons 2 '())

(f) > (cons 1 (cons 2 '()))

(g) > (cons 1 (cons 2 3))

(h) > (cons (cons (car '(1 2 3))

(list 2 3 4))

(cons 2 3))

(i) > (car (cdr (car '((1 2) 3 (4 5)))))

(j) > (cddr '((1 2) 3 (4 5)))



2 Final Review

1.2 Define sixty-ones. Return the number of times that 1 follows 6 in the list.

> (sixty-ones '(4 6 1 6 0 1))

1

> (sixty-ones '(1 6 1 4 6 1 6 0 1))

2

> (sixty-ones '(6 1 6 1 4 6 1 6 0 1))

3

1.3 Identify the bug(s) in this program.

> (sum-every-other '(1 2 3))

4

> (sum-every-other '())

0

> (sum-every-other '(1 2 3 4))

4

> (sum-every-other '(1 2 3 4 5))

9

(define (sum-every-other lst)

(cond ((null? lst) lst)

(else (+ (cdr lst)

(sum-every-other (caar lst)) ))))

1.4 (a) Implement add-to-all.

> (add-to-all 'foo '((1 2) (3 4) (5 6)))

((foo 1 2) (foo 3 4) (foo 5 6))

(b) Rewrite add-to-all tail-recursively.



Final Review 3

1.5 Define sublists. Hint: use add-to-all.

> (sublists '(1 2 3))

(() (3) (2) (2 3) (1) (1 3) (1 2) (1 2 3))

1.6 (a) Define append. In Scheme, append takes in two lists and returns a larger list.

> (append '(1 2 3) '(4 5 6))

(1 2 3 4 5 6)

(b) Define reverse. Hint: use append.

> (reverse '(1 2 3))

(3 2 1)

(c) Define reverse tail-recursively. Hint: use a helper function and cons.



4 Final Review

2 Interpreters
2.1 Circle the number of calls to scheme_eval and scheme_apply for the code below.

(a) scm> (+ 1 2)

3

scheme_eval 1 3 4 6

scheme_apply 1 2 3 4

(b) scm> (if 1 (+ 2 3) (/ 1 0))

5

scheme_eval 1 3 4 6

scheme_apply 1 2 3 4

(c) scm> (or #f (and (+ 1 2) 'apple) (- 5 2))

apple

scheme_eval 6 8 9 10

scheme_apply 1 2 3 4

(d) scm> (define (add x y) (+ x y))

add

scm> (add (- 5 3) (or 0 2))

2

scheme_eval 12 13 14 15

scheme_apply 1 2 3 4

2.2 Identify the number of calls to scheme_eval and the number of calls to scheme_apply.

(a) scm> (define pi 3.14)

pi

scm> (define (hack x)

(cond

((= x pi) pwned)

((< x 0) (hack pi))

(else (hack (- x 1)))))

hack

(b) scm> (hack 3.14)

pwned

(c) scm> ((lambda (x) (hack x)) 0)

pwned



Final Review 5

3 Streams
class Stream:

"""A lazily computed linked list."""

class empty:

"""The empty stream."""

empty = empty()

def __init__(self, first, compute_rest=empty):

"""A stream whose first element is FIRST and whose tail is either a stream or stream-returning

parameterless function COMPUTE_REST."""

@property

def rest(self):

"""Return the rest of the stream, computing it if necessary."""

3.1 (a) What are the advantages or disadvantages of using a stream over a linked list?

(b) What’s the maximum size of a stream?

(c) What’s stored in first and rest? What are their types?

(d) When is the next element actually calculated?

3.2 Implement unique_stream which takes in a stream s and returns a new stream that

contains only the unique elements of the input stream in the original order. Assume

that s is finite.

def unique_stream(s):



6 Final Review

4 SQL
After more than 100 years of operation, the Ringling Bros. circus is closing. A

victory for animal rights advocates, the circus’ closure poses a challenge for the

zoologists tasked with moving the circus’ animals to more suitable habitats.

The zoologists must first take the animals in a freight elevator with a weight limit

of 2000. In order to speed up the process, the zoologists prefer to take groups of

animals of the same species in the elevator, rather than one animal at a time.

Assume the zoologists will only put all of the animals of a particular species in the

elevator, or take animals of that particular species one at a time.

You have access to the table animals, with columns containing the animals’ names,

weights, and species.

4.1 Write a query that returns the collective weight and species of animals in a group

where there is more than one animal of a particular species in a group, and the

collective weight of the animals in the group is less than 2000.

Your query should yield the following result.

229 pig

1618 tiger

91 dog

4.2 To take the animals to their new habitats, the zoologists load the animals into

trucks. The zoologists again want to take the animals in groups of the same species,

but one of the trucks has a height limit of 5.0.

Write a query that returns the maximum height and species of animals in a group

where the maximum height is less than 5.0. Your query may yield a species where

there is only one animal of that particular species.

Your query should yield the following result.

4.1 pig

4 dog

4.9 zebra


	Scheme
	Interpreters
	Streams
	SQL

