
CS 61A Final Review
Summer 2017 August 7, 2017

Instructions

Form a small group. Start on problem 1.1. Check off with a staff member or discuss

your solution process with a nearby group when you think everyone in your group

understands how to solve problem 1.1. Then repeat for 1.2, 1.3, . . .

You may not move to the next problem until you check off or discuss with another

group and everyone understands why the solution is what it is. You may use any

course resources at your disposal: the purpose of this review session is to have

everyone learning together as a group.



2 Final Review

1 Scheme
1.1 What would Scheme display?

(a) > '(1 2 3)

(1 2 3)

(b) > '(1 . (2 . (3 . ())))

(1 2 3)

(c) > '(((1 . 2) . 3) 4 . (5 . 6))

(((1 . 2) . 3) 4 5 . 6)

(d) > (cons 1 2)

(1 . 2)

(e) > (cons 2 '())

(2)

(f) > (cons 1 (cons 2 '()))

(1 2)

(g) > (cons 1 (cons 2 3))

(1 2 . 3)

(h) > (cons (cons (car '(1 2 3))

(list 2 3 4))

(cons 2 3))

((1 2 3 4) 2 . 3)

(i) > (car (cdr (car '((1 2) 3 (4 5)))))

2

(j) > (cddr '((1 2) 3 (4 5)))

((4 5))

1.2 Define sixty-ones. Return the number of times that 1 follows 6 in the list.

> (sixty-ones '(4 6 1 6 0 1))

1

> (sixty-ones '(1 6 1 4 6 1 6 0 1))

2

> (sixty-ones '(6 1 6 1 4 6 1 6 0 1))

3

(define (sixty-ones lst)

(cond ((or (null? lst) (null? (cdr lst))) 0)

((and (= 6 (car lst)) (= 1 (cadr lst))) (+ 1 (sixty-ones (cddr lst))))

(else (sixty-ones (cdr lst)))))



Final Review 3

1.3 Identify the bug(s) in this program.

> (sum-every-other '(1 2 3))

4

> (sum-every-other '())

0

> (sum-every-other '(1 2 3 4))

4

> (sum-every-other '(1 2 3 4 5))

9

(define (sum-every-other lst)

(cond ((null? lst) lst)

(else (+ (cdr lst)

(sum-every-other (caar lst)) ))))

• The base case should return 0, not '().

• (cdr lst) is a list, so it doesn’t make sense to add it to something. Instead,

use (car lst), which will give us a number.

• Using caar (first of the first) is incorrect because the first is a number and it

doesn’t make sense to get the first of a number. Instead, we should use cddr

(rest of the rest) to skip forward two elements. However, the cdr could be '(),

so we need to add a case to our cond to take care of this.

(define (sum-every-other lst)

(cond ((null? lst) 0)

((null? (cdr lst)) (car lst))

(else (+ (car lst)

(sum-every-other (cddr lst)) ))))

1.4 (a) Implement add-to-all.

> (add-to-all 'foo '((1 2) (3 4) (5 6)))

((foo 1 2) (foo 3 4) (foo 5 6))

(define (add-to-all item lst)

(if (null? lst) lst

(cons (cons item (car lst))

(add-to-all item (cdr lst)))))

(b) Rewrite add-to-all tail-recursively.

(define (add-to-all item lst)

(define (helper item lst added)

(if (null? lst) added

(helper item (cdr lst) (append added (list (cons item (car lst)))))))

(helper item lst '()))



4 Final Review

1.5 Define sublists. Hint: use add-to-all.

> (sublists '(1 2 3))

(() (3) (2) (2 3) (1) (1 3) (1 2) (1 2 3))

(define (sublists lst)

(if (null? lst) '(())

(let ((recur (sublists (cdr lst))))

(append recur (add-to-all (car lst) recur)))))

1.6 (a) Define append. In Scheme, append takes in two lists and returns a larger list.

> (append '(1 2 3) '(4 5 6))

(1 2 3 4 5 6)

(define (append lst1 lst2)

(if (null? lst1) lst2

(cons (car lst1) (append (cdr lst1) lst2)))))

(b) Define reverse. Hint: use append.

> (reverse '(1 2 3))

(3 2 1)

(define (reverse lst)

(if (null? lst) lst

(append (reverse (cdr lst)) (list (car lst)))))

(c) Define reverse tail-recursively. Hint: use a helper function and cons.

(define (reverse lst)

(define (helper lst reversed)

(if (null? lst) reversed

(helper (cdr lst) (cons (car lst) reversed ))))

(helper lst '()))



Final Review 5

2 Interpreters
2.1 Circle the number of calls to scheme_eval and scheme_apply for the code below.

(a) scm> (+ 1 2)

3

scheme_eval 1 3 4 6

scheme_apply 1 2 3 4

4 scheme_eval, 1 scheme_apply.

(b) scm> (if 1 (+ 2 3) (/ 1 0))

5

scheme_eval 1 3 4 6

scheme_apply 1 2 3 4

6 scheme_eval, 1 scheme_apply.

(c) scm> (or #f (and (+ 1 2) 'apple) (- 5 2))

apple

scheme_eval 6 8 9 10

scheme_apply 1 2 3 4

8 scheme_eval, 1 scheme_apply.

(d) scm> (define (add x y) (+ x y))

add

scm> (add (- 5 3) (or 0 2))

2

scheme_eval 12 13 14 15

scheme_apply 1 2 3 4

13 scheme_eval, 3 scheme_apply.



6 Final Review

2.2 Identify the number of calls to scheme_eval and the number of calls to scheme_apply.

(a) scm> (define pi 3.14)

pi

scm> (define (hack x)

(cond

((= x pi) pwned)

((< x 0) (hack pi))

(else (hack (- x 1)))))

hack

3 scheme_eval, 0 scheme_apply

(b) scm> (hack 3.14)

pwned

9 scheme_eval, 2 scheme_apply

(c) scm> ((lambda (x) (hack x)) 0)

pwned

39 scheme_eval, 10 scheme_apply



Final Review 7

3 Streams
class Stream:

"""A lazily computed linked list."""

class empty:

"""The empty stream."""

empty = empty()

def __init__(self, first, compute_rest=empty):

"""A stream whose first element is FIRST and whose tail is either a stream or stream-returning

parameterless function COMPUTE_REST."""

@property

def rest(self):

"""Return the rest of the stream, computing it if necessary."""

3.1 (a) What are the advantages or disadvantages of using a stream over a linked list?

Lazy evaluation. We only evaluate up to what we need.

(b) What’s the maximum size of a stream?

Infinite

(c) What’s stored in first and rest? What are their types?

first is a value, rest is another stream (either a method to calculate it, or an

already calculated stream). In the case of Scheme, this is called a promise.

(d) When is the next element actually calculated?

Only when it’s requested (and hasn’t already been calculated)

3.2 Implement unique_stream which takes in a stream s and returns a new stream that

contains only the unique elements of the input stream in the original order. Assume

that s is finite.

def unique_stream(s):

seen = set()

def compute_rest(s):

if s is Stream.empty:

return Stream.empty

elif s.first in seen:

return compute_rest(s.rest)

else:

seen.add(s.first)

return Stream(s.first, lambda: compute_rest(s.rest))

return compute_rest(s)



8 Final Review

4 SQL
After more than 100 years of operation, the Ringling Bros. circus is closing. A

victory for animal rights advocates, the circus’ closure poses a challenge for the

zoologists tasked with moving the circus’ animals to more suitable habitats.

The zoologists must first take the animals in a freight elevator with a weight limit

of 2000. In order to speed up the process, the zoologists prefer to take groups of

animals of the same species in the elevator, rather than one animal at a time.

Assume the zoologists will only put all of the animals of a particular species in the

elevator, or take animals of that particular species one at a time.

You have access to the table animals, with columns containing the animals’ names,

weights, and species.

4.1 Write a query that returns the collective weight and species of animals in a group

where there is more than one animal of a particular species in a group, and the

collective weight of the animals in the group is less than 2000.

Your query should yield the following result.

229 pig

1618 tiger

91 dog

select sum(weight), species from animals

group by species having count(*) > 1 and sum(weight) < 2000;

4.2 To take the animals to their new habitats, the zoologists load the animals into

trucks. The zoologists again want to take the animals in groups of the same species,

but one of the trucks has a height limit of 5.0.

Write a query that returns the maximum height and species of animals in a group

where the maximum height is less than 5.0. Your query may yield a species where

there is only one animal of that particular species.

Your query should yield the following result.

4.1 pig

4 dog

4.9 zebra

select max(height), species from animals as a, height as b

where a.name = b.name

group by species having max(height) < 5.0;


	Scheme
	Interpreters
	Streams
	SQL

